Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(3): 1293-1300, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189229

RESUMO

Due to the substantial heterogeneity among extracellular vesicle (EV) subpopulations, single-EV analysis has the potential to elucidate the mechanisms behind EV biogenesis and shed light on the myriad functions, leading to the development of novel diagnostics and therapeutics. While many studies have been devoted to reveal between-EV variations in surface proteins and RNAs, DNA cargos (EV-DNA) have received little attention. Here, we report a hydrogel-based droplet digital multiple displacement amplification approach for the comprehensive analysis of EV-DNA at the single-EV level. Single EVs are dispersed in thousands of hydrogel droplets and lysed for DNA amplification and identification. The droplet microfluidics strategy empowers the assay with single-molecule sensitivity and capability for absolute quantification of DNA-containing EVs. In particular, our findings indicate that 5-40% EVs are associated with DNA, depending on the cell of origin. Large EVs exhibit a higher proportion of DNA-containing EVs and a more substantial presence of intraluminal DNA, compared to small EVs. These DNA-containing EVs carry multiple DNA fragments on average. Furthermore, both double-stranded DNA and single-stranded DNA were able to be detected at the single-EV level. Utilizing this method, the abundance, distribution, and biophysical properties of EV-DNA in various EV populations are evaluated. The DNA level within EVs provides insight into the status of the originating cells and offers valuable information on the outcomes of anticancer treatments. The utilization of single-EV analysis for EV-DNA holds significant promise for early cancer detection and treatment response monitoring.


Assuntos
Vesículas Extracelulares , Hidrogéis , Hidrogéis/metabolismo , Vesículas Extracelulares/metabolismo , DNA/metabolismo , RNA/metabolismo , Proteínas de Membrana/metabolismo
2.
Anal Chem ; 96(24): 9917-9926, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38837181

RESUMO

Two-dimensional (2D) materials have been extensively implemented as surface-enhanced Raman scattering (SERS) substrates, enabling trace-molecule detection for broad applications. However, the accurate understanding of the mechanism remains elusive because most theoretical explanations are still phenomenological or qualitative based on simplified models and rough assumptions. To advance the development of 2D material-assisted SERS, it is vital to attain a comprehensive understanding of the enhancement mechanism and a quantitative assessment of the enhancement performance. Here, the microscopic chemical mechanism of 2D material-assisted SERS is quantitatively investigated. The frequency-dependent Raman scattering cross sections suggest that the 2D materials' SERS performance is strongly dependent on the excitation wavelengths and the molecule types. By analysis of the microscopic Raman scattering processes, the comprehensive contributions of SERS can be revealed. Beyond the widely postulated charge transfer mechanisms, the quantitative results conclusively demonstrate that the resonant transitions within 2D materials alone are also capable of enhancing the molecular Raman scattering through the diffusive scattering of phonons. Furthermore, all of these scattering routines will interfere with each other and determine the final SERS performance. Our results not only provide a complete picture of the SERS mechanisms but also demonstrate a systematic and quantitative approach to theoretically understand, predict, and promote the 2D materials SERS toward analytical applications.

3.
BMC Psychiatry ; 23(1): 649, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667222

RESUMO

Hyperglycemia and metabolic syndrome (MetS) are common in patients with major depressive disorder (MDD). This study aimed to explore the prevalence and clinical factors of MetS in first-episode and drug-naïve MDD (FEDND) patients with and without hyperglycemia. A total of 1,718 FEDND patients' symptoms were assessed using the Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA), and positive subscale of the Positive and Negative Syndrome Scale (PANSS). Blood glucose levels, metabolic index, and thyroid hormones were measured during fasting. The prevalence of MetS in FEDND patients with hyperglycemia was 35.67 times higher than in FEDND patients without hyperglycemia. FEDND patients with MetS were older, had later age of onset, and were predominantly married than those without MetS (p < 0.05). Among FEDND patients without hyperglycemia, suicide attempts, severe anxiety, HAMD, HAMA, PANSS subscale scores, thyroid stimulating hormone, antithyroglobulin, and total cholesterol levels were all higher in patients with MetS than those without MetS (all p < 0.05). In FEDND patients without hyperglycemia, the combination of age and TgAb distinguished those patients with and without MetS. Our results suggest a high prevalence of MetS in FEDND patients with hyperglycemia. Several clinical variables and thyroid function-related hormones impact MetS in patients with FEDND.


Assuntos
Transtorno Depressivo Maior , Hiperglicemia , Síndrome Metabólica , Humanos , Hormônios Tireóideos/sangue , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/epidemiologia , Síndrome Metabólica/epidemiologia , Hiperglicemia/epidemiologia , Prevalência , Tireotropina , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Estudos de Casos e Controles
4.
Br J Cancer ; 127(7): 1180-1183, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35999274

RESUMO

We speculate ruptured circulating tumour cells (CTC) in capillaries could release a large number of small extracellular vesicle-like vesicles, namely mechanically extruded sEV (sEVme), which can encapsulate chromosomal DNA fragments. These sEVme have similar physicochemical properties compared to small extracellular vesicles spontaneously secreted by living cells (sEVss), and thus sEVme and sEVss cannot be effectively distinguished based on their size or membrane protein markers. Meanwhile, these sEVme derived from CTC inherit oncogenic payloads, deliver cargo through the bloodstream to recipient cells, and thus may promote cancer metastasis. The validation of this speculation could facilitate our understanding of EV biogenesis and cancer pathology. The potential finding will also provide a theoretical foundation for burgeoning liquid biopsy using DNA fragments derived from harvested sEV.


Assuntos
Vesículas Extracelulares , Células Neoplásicas Circulantes , DNA/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Células Neoplásicas Circulantes/metabolismo , Oncogenes
6.
J Am Chem Soc ; 140(23): 7282-7291, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29809001

RESUMO

The intracellular delivery of biofunctional enzymes or therapeutic proteins through systemic administration is of great importance in therapeutic intervention of various diseases. However, current strategies face substantial challenges owing to various biological barriers, including susceptibility to protein degradation and denaturation, poor cellular uptake, and low transduction efficiency into the cytosol. Here, we developed a biomimetic nanoparticle platform for systemic and intracellular delivery of proteins. Through a biocompatible strategy, guest proteins are caged in the matrix of metal-organic frameworks (MOFs) with high efficiency (up to ∼94%) and high loading content up to ∼50 times those achieved by surface conjunction, and the nanoparticles were further decorated with the extracellular vesicle (EV) membrane with an efficiency as high as ∼97%. In vitro and in vivo study manifests that the EV-like nanoparticles can not only protect proteins against protease digestion and evade the immune system clearance but also selectively target homotypic tumor sites and promote tumor cell uptake and autonomous release of the guest protein after internalization. Assisted by biomimetic nanoparticles, intracellular delivery of the bioactive therapeutic protein gelonin significantly inhibits the tumor growth in vivo and increased 14-fold the therapeutic efficacy. Together, our work not only proposes a new concept to construct a biomimetic nanoplatform but also provides a new solution for systemic and intracellular delivery of protein.


Assuntos
Portadores de Fármacos/química , Vesículas Extracelulares/química , Estruturas Metalorgânicas/química , Nanopartículas/química , Proteínas Inativadoras de Ribossomos Tipo 1/química , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/uso terapêutico , Materiais Biomiméticos/toxicidade , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Portadores de Fármacos/metabolismo , Portadores de Fármacos/uso terapêutico , Portadores de Fármacos/toxicidade , Endocitose/fisiologia , Vesículas Extracelulares/metabolismo , Humanos , Estruturas Metalorgânicas/metabolismo , Estruturas Metalorgânicas/uso terapêutico , Estruturas Metalorgânicas/toxicidade , Camundongos , Nanopartículas/metabolismo , Nanopartículas/uso terapêutico , Nanopartículas/toxicidade , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Proteínas Inativadoras de Ribossomos Tipo 1/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Small ; 14(44): e1802899, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30286282

RESUMO

The mechanism of cells passing through microconstrictions, such as capillaries and endothelial junctions, influences metastasis of circulating tumor cells (CTCs) in vivo, as well as size-based enrichment of CTCs in vitro. However, very few studies observe such translocation of microconstrictions in real time, and thus the inherent biophysical mechanism is poorly understood. In this study, a multiplexed microfluidic device is fabricated for real-time tracking of cell translocation under physiological pressure and recording deformation of the whole cell and nucleus, respectively. It is found that the deformability and size of the nucleus instead of the whole cell dominate cellular translocation through microconstrictions under a normal physiological pressure range. More specifically, cells with a large and stiff nucleus are prone to be blocked by relatively small constrictions. The same phenomenon is also observed in the size-based enrichment of CTCs from peripheral blood of metastatic cancer patients. These findings are different from a popular viewpoint that the size and deformability of a whole cell mainly determine cell translation through microconstrictions, and thus may elucidate interactions between CTCs and capillaries from a new perspective and guide the rational design of size-based microfilters for rare cell enrichment.


Assuntos
Biomimética/métodos , Núcleo Celular/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes/patologia
8.
Small ; 14(12): e1702787, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29399951

RESUMO

Bone metastasis occurs at ≈70% frequency in metastatic breast cancer. The mechanisms used by tumors to hijack the skeleton, promote bone metastases, and confer therapeutic resistance are poorly understood. This has led to the development of various bone models to investigate the interactions between cancer cells and host bone marrow cells and related physiological changes. However, it is challenging to perform bone studies due to the difficulty in periodic sampling. Herein, a bone-on-a-chip (BC) is reported for spontaneous growth of a 3D, mineralized, collagenous bone tissue. Mature osteoblastic tissue of up to 85 µm thickness containing heavily mineralized collagen fibers naturally formed in 720 h without the aid of differentiation agents. Moreover, co-culture of metastatic breast cancer cells is examined with osteoblastic tissues. The new bone-on-a-chip design not only increases experimental throughput by miniaturization, but also maximizes the chances of cancer cell interaction with bone matrix of a concentrated surface area and facilitates easy, frequent observation. As a result, unique hallmarks of breast cancer bone colonization, previously confirmed only in vivo, are observed. The spontaneous 3D BC keeps the promise as a physiologically relevant model for the in vitro study of breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas/diagnóstico , Neoplasias da Mama/diagnóstico , Microfluídica/métodos , Neoplasias Ósseas/etiologia , Neoplasias Ósseas/patologia , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Feminino , Humanos , Metástase Neoplásica/diagnóstico , Metástase Neoplásica/patologia
9.
Small ; 13(24)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28636164

RESUMO

Rapid and simultaneous detection of multiple potential pathogens by portable devices can facilitate early diagnosis of infectious diseases, and allow for rapid and effective implementation of disease prevention and treatment measures. The development of a ZnO nanorod integrated microdevice as a multiplex immunofluorescence platform for highly sensitive and selective detection of avian influenza virus (AIV) is described. The 3D morphology and unique optical property of the ZnO nanorods boost the detection limit of the H5N2 AIV to as low as 3.6 × 103 EID50 mL-1 (EID50 : 50% embryo infectious dose), which is ≈22 times more sensitive than conventional enzyme-linked immunosorbent assay. The entire virus capture and detection process could be completed within 1.5 h with excellent selectivity. Moreover, this microfluidic biosensor is capable of detecting multiple viruses simultaneously by spatial encoding of capture antibodies. One prominent feature of the device is that the captured H5N2 AIV can be released by simply dissolving ZnO nanorods under slightly acidic environment for subsequent off-chip analyses. As a whole, this platform provides a powerful tool for rapid detection of multiple pathogens, which may extent to the other fields for low-cost and convenient biomarker detection.


Assuntos
Imunoensaio/métodos , Microfluídica/métodos , Nanoestruturas/química , Animais , Aves , Virus da Influenza A Subtipo H5N1/patogenicidade , Vírus da Influenza A Subtipo H5N2/patogenicidade , Influenza Aviária/diagnóstico
10.
Small ; 13(6)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27918640

RESUMO

Viral diseases are perpetual threats to human and animal health. Detection and characterization of viral pathogens require accurate, sensitive, and rapid diagnostic assays. For field and clinical samples, the sample preparation procedures limit the ultimate performance and utility of the overall virus diagnostic protocols. This study presents the development of a microfluidic device embedded with porous silicon nanowire (pSiNW) forest for label-free size-based point-of-care virus capture in a continuous curved flow design. The pSiNW forests with specific interwire spacing are synthesized in situ on both bottom and sidewalls of the microchannels in a batch process. With the enhancement effect of Dean flow, this study demonstrates that about 50% H5N2 avian influenza viruses are physically trapped without device clogging. A unique feature of the device is that captured viruses can be released by inducing self-degradation of the pSiNWs in physiological aqueous environment. About 60% of captured viruses can be released within 24 h for virus culture, subsequent molecular diagnosis, and other virus characterization and analyses. This device performs viable, unbiased, and label-free virus isolation and release. It has great potentials for virus discovery, virus isolation and culture, functional studies of virus pathogenicity, transmission, drug screening, and vaccine development.


Assuntos
Vírus da Influenza A/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Nanofios/química , Silício/química , Coloração e Rotulagem , Desenho de Equipamento , Nanosferas/química , Tamanho da Partícula , Porosidade
11.
Langmuir ; 31(13): 3982-92, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25782525

RESUMO

A simple and robust method for one-step synthesis of monodisperse functional polymeric microspheres was established by generation of reversed microemulsion droplets in aqueous phase inside microfluidic chips and controlled evaporation of the organic solvent. Using this method, water-soluble nanomaterials can be easily encapsulated into biodegradable Poly(D,L-lactic-co-glycolic acid) (PLGA) to form functional microspheres. By controlling the flow rate of microemulsion phase, PLGA polymeric microspheres with narrow size distribution and diameters in the range of ∼50-100 µm were obtained. As a demonstration of the versatility of the approach, high-quality fluorescent CdTe:Zn(2+) quantum dots (QDs) of various emission spectra, superparamagnetic Fe3O4 nanoparticles, and water-soluble carbon nanotubes (CNTs) were used to synthesize fluorescent PLGA@QDs, magnetic PLGA@Fe3O4, and PLGA@CNTs polymeric microspheres, respectively. In order to show specific applications, the PLGA@Fe3O4 were modified with polydopamine (PDA), and then the silver nanoparticles grew on the surfaces of the PLGA@Fe3O4@PDA polymeric microspheres by reducting the Ag(+) to Ag(0). The as-prepared PLGA@Fe3O4@PDA-Ag microspheres showed a highly efficient catalytic reduction of the 4-nitrophenol, a highly toxic substance. The monodisperse uniform functional PLGA polymeric microspheres can potentially be critically important for multiple biomedical applications.


Assuntos
Microfluídica/métodos , Microesferas , Polímeros/química , Indóis/química , Nanopartículas Metálicas/química , Nanotubos de Carbono/química , Pontos Quânticos , Prata/química
12.
Clin Chem ; 60(2): 323-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24132944

RESUMO

BACKGROUND: The dissemination of circulating tumor cells (CTCs) that cause metastases in distant organs accounts for the majority of cancer-related deaths. CTCs have been established as a cancer biomarker of known prognostic value. The enrichment of viable CTCs for ex vivo analysis could further improve cancer diagnosis and guide treatment selection. We designed a new flexible micro spring array (FMSA) device for the enrichment of viable CTCs independent of antigen expression. METHODS: Unlike previous microfiltration devices, flexible structures at the micro scale minimize cell damage to preserve viability, while maximizing throughput to allow rapid enrichment directly from whole blood with no need for sample preprocessing. Device performance with respect to capture efficiency, enrichment against leukocytes, viability, and proliferability was characterized. CTCs and CTC microclusters were enriched from clinical samples obtained from breast, lung, and colorectal cancer patients. RESULTS: The FMSA device enriched tumor cells with 90% capture efficiency, higher than 10(4) enrichment, and better than 80% viability from 7.5-mL whole blood samples in <10 min on a 0.5-cm(2) device. The FMSA detected at least 1 CTC in 16 out of 21 clinical samples (approximately 76%) compared to 4 out of 18 (approximately 22%) detected with the commercial CellSearch® system. There was no incidence of clogging in over 100 tested fresh whole blood samples. CONCLUSIONS: The FMSA device provides a versatile platform capable of viable enrichment and analysis of CTCs from clinically relevant volumes of whole blood.


Assuntos
Separação Celular/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Células Neoplásicas Circulantes , Análise Serial de Tecidos/instrumentação , Contagem de Células , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células , Separação Celular/métodos , Sobrevivência Celular , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/métodos , Humanos , Leucócitos/citologia , Modelos Biológicos , Células Neoplásicas Circulantes/patologia , Análise Serial de Tecidos/métodos
13.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293207

RESUMO

Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells ( BECs ) results in long-term neurological dysfunction post-stroke. We previously reported that intravenous administration of human BEC ( hBEC )-derived mitochondria-containing extracellular vesicles ( EVs ) showed a potential efficacy signal in a mouse middle cerebral artery occlusion ( MCAo ) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species ( e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC ( mBEC )-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated if EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) show a greater EV mitochondria delivery efficiency than cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa ). Our results showed that mBEC-EVs outperformed hBEC-EVs in transferring EV mitochondria to the recipient ischemic mBECs, and improved mBEC mitochondrial function via increasing oxygen consumption rate. mBEC-EVs significantly reduced brain infarct volume and improved behavioral recovery compared to vehicle-injected MCAo mice. Our data suggests that mBEC-EVs show superior therapeutic efficacy in a mouse MCAo stroke model compared to hBEC-EVs-supporting the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical studies.

14.
Sci Total Environ ; 878: 163163, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37003338

RESUMO

Coal dust is the major hazardous pollutant in the coal mining environment. Recently environmentally persistent free radicals (EPFRs) were identified as one of the key characteristics which could impart toxicity to the particulates released into the environment. The present study used Electron Paramagnetic Resonance (EPR) spectroscopy to analyze the characteristics of EPFRs present in different types of nano-size coal dust. Further, it analyzed the stability of the free radicals in the respirable nano-size coal dust and compared their characteristics in terms of EPR parameters (spin counts and g-values). It was found that free radicals in coal are remarkably stable (can remain intact for several months). Also, Most of the EPFRs in the coal dust particles are either oxygenated carbon centered or a mixture of carbon and oxygen-centered free radicals. EPFRs concentration in the coal dust was found to be proportional to the carbon content of coal. The characteristic g-values were found to be inversely related to the carbon content of coal dust. The spin concentrations in the lignite coal dust were between 3.819 and 7.089 µmol/g, whereas the g-values ranged from 2.00352 to 2.00363. The spin concentrations in the bituminous coal dust were between 11.614 and 25.562 µmol/g, whereas the g-values ranged from 2.00295 to 2.00319. The characteristics of EPFRs present in coal dust identified by this study are similar to the EPFRs, which were found in other environmental pollutants such as combustion-generated particulates, PM2.5, indoor dust, wildfires, biochar, haze etc., in some of the previous studies. Considering the toxicity analysis of environmental particulates containing EPFRs similar to those identified in the present study, it can be confidently hypothesized that the EPFRs in the coal dust might play a major role in modulating the coal dust toxicity. Hence, it is recommended that future studies should analyze the role of EPFR-loaded coal dust in mediating the inhalation toxicity of coal dust.

15.
J Control Release ; 354: 196-206, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610480

RESUMO

Reactive oxygen species (ROS) generation to induce cell death is an effective strategy for cancer therapy. In particular, chemodynamic therapy (CDT), using Fenton-type reactions to generate highly cytotoxic hydroxyl radical (•OH), is a promising treatment modality. However, the therapeutic efficacy of ROS-based cancer treatment is still limited by some critical challenges, such as overexpression of enzymatic and non-enzymatic antioxidants by tumor cells, as well as the low tumor targeting efficiency of therapeutic agents. To address those problems, biomimetic CuZn protoporphyrin IX nanoscale coordination polymers have been developed, which significantly amplify oxidative stress against tumors by simultaneously inhibiting enzymatic and non-enzymatic antioxidants and initiating the CDT. In this design, cancer cell membrane camouflaged nanoparticle exhibits an excellent homotypic targeting effect. After being endocytosed into tumor cells, the nanoparticles induce depletion of the main non-enzymatic antioxidant glutathione (GSH) by undergoing a redox reaction with GSH. Afterward, the redox reaction generated cuprous ion (Cu+) works as a CDT agent for •OH generation. Furthermore, the released Zn protoporphyrin IX strongly inhibits the activity of the typical enzymatic antioxidant heme oxygenase-1. This tetra-modal synergistic strategy endows the biomimetic nanoparticles with great capability for anticancer therapy, which has been demonstrated in both in vitro and in vivo studies.


Assuntos
Nanopartículas , Neoplasias , Humanos , Antioxidantes , Espécies Reativas de Oxigênio , Glutationa , Estresse Oxidativo , Biomimética , Linhagem Celular Tumoral , Peróxido de Hidrogênio , Microambiente Tumoral
16.
Biomed Microdevices ; 14(1): 235-45, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21997499

RESUMO

Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing.


Assuntos
Insuficiência Cardíaca/terapia , Coração Auxiliar , Humanos , Pressão
17.
Methods Mol Biol ; 2394: 185-197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094329

RESUMO

Extracellular vesicles (EVs) are lipid-bilayer-enclosed vesicles with sub-micrometer size that are released by various cells. EVs contain a tissue-specific signature wherein a variety of proteins and nucleic acids are selectively packaged. Growing evidence has shown important biological roles and clinical relevance of EVs in diseases. For EV-related studies to thrive, rapid efficient isolation of pure EVs is a prerequisite. However, lengthy procedure, low yield, low throughput, and high contaminants stemmed from existing isolation approaches hamper both basic research and large-scale clinical implementation. We have shown that lipid nanoprobes (LNP) enable spontaneous labeling and rapid isolation of EVs by coupling with magnetic enrichment. Recently, we further developed a one-step EV isolation platform that utilizes EV size-matched silica nanostructures and surface-conjugated LNPs with an integrated microfluidic mixer. EVs, derived from up to 2-ml clinical plasma, can be processed with this point-of-care device using optimized flow rate. Subsequently, contents of isolated EVs can be extracted on-chip and eluted from the device for downstream molecular analyses. The LNP-functionalized microfluidic device combined with state-of-the-art analysis platforms could have great potential in promoting EV-centered research and clinical use in the future.


Assuntos
Vesículas Extracelulares , Nanoestruturas , Vesículas Extracelulares/química , Dispositivos Lab-On-A-Chip , Bicamadas Lipídicas/análise , Microfluídica , Nanoestruturas/química
18.
ACS Appl Mater Interfaces ; 14(5): 6287-6306, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35090107

RESUMO

Vertically aligned carbon nanotubes (VACNTs), a unique classification of CNT, highly oriented and normal to the respective substrate, have been heavily researched over the last two decades. Unlike randomly oriented CNT, VACNTs have demonstrated numerous advantages making it an extremely desirable nanomaterial for many biomedical applications. These advantages include better spatial uniformity, increased surface area, greater susceptibility to functionalization, improved electrocatalytic activity, faster electron transfer, higher resolution in sensing, and more. This Review discusses VACNT and its utilization in biomedical applications particularly for sensing, biomolecule filtration systems, cell stimulation, regenerative medicine, drug delivery, and bacteria inhibition. Furthermore, comparisons are made between VACNT and its traditionally nonaligned, randomly oriented counterpart. Thus, we aim to provide a better understanding of VACNT and its potential applications within the community and encourage its utilization in the future.


Assuntos
Portadores de Fármacos/química , Nanotubos de Carbono/química , Engenharia Tecidual , Animais , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Técnicas Biossensoriais/métodos , Antígeno Carcinoembrionário/análise , Proliferação de Células/efeitos dos fármacos , Humanos , Nanotubos de Carbono/toxicidade
19.
Laser Photon Rev ; 16(8)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36389089

RESUMO

Conventional light sheet fluorescence microscopy (LSFM) utilizes two perpendicularly arranged objective lenses for optical excitation and detection, respectively. Such a configuration often limits the use of high-numerical-aperture (NA) objectives or requires specially designed long-working-distance objectives. Here, a LSFM based on a micro-mirror array (MMA) to enable light sheet imaging with a single objective lens is reported. The planar fluorescent emission excited by the light sheet illumination is collected by the same objective, relayed onto an MMA and detected by a side-view camera. The proposed scheme makes LSFM compatible to single objective imaging system and shows promising candidacy for high spatiotemporal imaging.

20.
Cell Mol Bioeng ; 15(5): 367-389, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36444353

RESUMO

Introduction: Extracellular vesicles (EVs) are promising carriers for the delivery of biotherapeutic cargo such as RNA and proteins. We have previously demonstrated that the innate EV mitochondria in microvesicles (MVs), but not exosomes (EXOs) can be transferred to recipient BECs and mouse brain slice neurons. Here, we sought to determine if the innate EV mitochondrial load can be further increased via increasing mitochondrial biogenesis in the donor cells. We hypothesized that mitochondria-enriched EVs ("mito-EVs") may increase the recipient BEC ATP levels to a greater extent than naïve MVs. Methods: We treated NIH/3T3, a fibroblast cell line and hCMEC/D3, a human brain endothelial cell (BEC) line using resveratrol to activate peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), the central mediator of mitochondrial biogenesis. Naïve EVs and mito-EVs isolated from the non-activated and activated donor cells were characterized using transmission electron microscopy, dynamic light scattering and nanoparticle tracking analysis. The effect of mito-EVs on resulting ATP levels in the recipient BECs were determined using Cell Titer Glo ATP assay. The uptake of Mitotracker Red-stained EVs into recipient BECs and their colocalization with recipient BEC mitochondria were studied using flow cytometry and fluorescence microscopy. Results: Resveratrol treatment increased PGC-1α expression in the donor cells. Mito-MVs but not mito-EXOs showed increased expression of mitochondrial markers ATP5A and TOMM20 compared to naïve MVs. TEM images showed that a greater number of mito-MVs contained mitochondria compared to naïve MVs. Mito-MVs but not mito-EXOs showed a larger particle diameter compared to their naïve EV counterparts from the non-activated cells suggesting increased mitochondria incorporation. Mito-EVs were generated at higher particle concentrations compared to naïve EVs from non-activated cells. Mito-EVs increased the cellular ATP levels and transferred their mitochondrial load into the recipient BECs. Mito-MV mitochondria also colocalized with recipient BEC mitochondria. Conclusions: Our results suggest that the pharmacological modulation of mitochondrial biogenesis in the donor cells can change the mitochondrial load in the secreted MVs. Outcomes of physicochemical characterization studies and biological assays confirmed the superior effects of mito-MVs compared to naïve MVs-suggesting their potential to improve mitochondrial function in neurovascular and neurodegenerative diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00738-8.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA