Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1324019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505288

RESUMO

Introduction: Retrospective studies have suggested that Ursodeoxycholic Acid (UDCA) provide a protective effect against SARS-CoV-2 infection, particularly in patients with liver disease. However, it is uncertain whether this finding can be extended to the allogeneic hematopoietic stem cell transplantation (allo-HSCT) cohort. Therefore, we aim to examine the protective potential of UDCA against SARS-CoV-2 infection in recently received allo-HSCT patients. Methods: During the initial Omicron variant wave in China (December 2022 to February 2023), we conducted a prospective observational study involving 91 hospitalized patients who had undergone allo-HSCT within the previous 6 months as part of the National Longitudinal Cohort of Hematological Diseases (NICHE). Throughout hospitalization, we continuously monitored the status of COVID-19 using SARS-CoV-2 PCR kits or SARS-CoV-2 Antigen Rapid Tests. Results: Among these patients, 67.0% (n = 61) were confirmed to have contracted SARS-CoV-2 infection. For the 52 patients evaluated, 23.1% experienced a severe or critical clinical course. There was no difference in the infection rate or severity of COVID-19 between the UDCA group and the non-UDCA group. We found that only patients transplanted between 3 and 6 months ago demonstrated a higher risk of SARS-CoV-2 infection compared to those who received allo-HSCT within 3 months (Odds Ratio [OR]: 3.241, 95% Confidence Interval [CI]: 1.287-8.814, P = 0.016). But other clinical factors, such as administration of UDCA, showed no difference. Notably, only age ≥38 years old remained as an independent risk factor for a severe clinical course of SARS-CoV-2 infection (OR: 3.664, 95% CI: 1.129-13.007, P = 0.035). Conclusion: The effectiveness of UDCA in protecting newly allo-HSCT recipients against SARS-CoV-2 infection remains unconfirmed. Presently, the most effective strategy appears to be minimizing exposure to SARS-CoV-2. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04645199, identifier NCT04645199.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , Adulto , Ácido Ursodesoxicólico/uso terapêutico , Estudos Retrospectivos , Estudos Prospectivos , SARS-CoV-2 , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Progressão da Doença
2.
Exp Hematol Oncol ; 13(1): 16, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360825

RESUMO

The 2022 European LeukemiaNet (ELN) updated the previous risk classification published in 2017 but the prognostic significance for allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unclear. We enrolled 600 acute myeloid leukemia (AML) patients who underwent allo-HSCT to validate ELN-2022 genetic risk system and compared it with ELN-2017. There were 214 (35.67%), 162 (27.0%), and 224 (37.33%) patients in ELN-2022 favorable-, intermediate-, and adverse-risk group respectively and 86 patients (14.33%) experienced a shift in risk stratification compared to ELN-2017. Median and maximum follow-up time were 2.89 (95% CI 2.67 to 3.03) years and 8.78 years. The median overall survival (OS) was 73.8% (95% CI 67.5% to 80.3%), 63.9% (95% CI 56.7% to 72.0%) and 57.6% (95% CI 50.4% to 65.9%) in ELN-2022 favorable-, intermediate-, and adverse-risk group (P < 0.001). OS shortened significantly as the ELN-2022 risk stratification increased but didn't significantly in ELN-2017 intermediate-risk compared to favorable-risk. Both ELN-2022 and ELN-2017 adverse-risk were associated with increased cumulative incidence of relapse (CIR). Time-dependent receiver operating characteristic (ROC) analysis showed that both ELN-2017 and ELN-2022 risk systems had limited prognostic ability for OS. We modified ELN-2022 risk system with pre-transplant minimal residual disease (MRD) and the modified risk system performed a significantly superior efficacy to ELN-2022 system.

3.
J. appl. oral sci ; 31: e20230009, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1440421

RESUMO

Abstract Objectives The mid-palatal expansion technique is commonly used to correct maxillary constriction in dental clinics. However, there is a tendency for it to relapse, and the key molecules responsible for modulating bone formation remain elusive. Thus, this study aimed to investigate whether signal transducer and activator of transcription 3 (STAT3) activation contributes to osteoblast-mediated bone formation during palatal expansion and relapse. Methodology In total, 30 male Wistar rats were randomly allocated into Ctrl (control), E (expansion only), and E+Stattic (expansion plus STAT3-inhibitor, Stattic) groups. Micro-computed tomography, micromorphology staining, and immunohistochemistry of the mid-palatal suture were performed on days 7 and 14. In vitro cyclic tensile stress (10% magnitude, 0.5 Hz frequency, and 24 h duration) was applied to rat primary osteoblasts and Stattic was administered for STAT3 inhibition. The role of STAT3 in mechanical loading-induced osteoblasts was confirmed by alkaline phosphatase (ALP), alizarin red staining, and western blots. Results The E group showed greater arch width than the E+Stattic group after expansion. The differences between the two groups remained significant after relapse. We found active bone formation in the E group with increased expression of ALP, COL-I, and Runx2, although the expression of osteogenesis-related factors was downregulated in the E+stattic group. After STAT3 inhibition, expansive force-induced bone resorption was attenuated, as TRAP staining demonstrated. Furthermore, the administration of Stattic in vitro partially suppressed tensile stress-enhanced osteogenic markers in osteoblasts. Conclusions STAT3 inactivation reduced osteoblast-mediated bone formation during palatal expansion and post-expansion relapse, thus it may be a potential therapeutic target to treat force-induced bone formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA