Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410414, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924578

RESUMO

A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln = Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln = Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x = 6 for 0D, x = 3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln = Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.

2.
J Am Chem Soc ; 145(31): 16983-16987, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505903

RESUMO

Electrically conductive metal-organic frameworks (MOFs) have been extensively studied for their potential uses in energy-related technologies and sensors. However, achieving that goal requires MOFs to be highly stable and maintain their conductivity under practical operating conditions with varying solution environments and temperatures. Herein, we have designed and synthesized a new series of {[Ln4(µ4-O)(µ3-OH)3(INA)3(GA)3](CF3SO3)(H2O)6}n (denoted as Ln4-MOFs, Ln = Gd, Tm, and Lu, INA = isonicotinic acid, GA = glycolic acid) single crystals, where electrons are found to transport along the π-π stacked aromatic carbon rings in the crystals. The Ln4-MOFs show remarkable stability, with minimal changes in conductivity under varying solution pH (1-12), temperature (373 K), and electric field as high as 800 000 V/m. This stability is achieved through the formation of strong coordination bonds between high-valent Ln(III) ions and rigid carboxylic linkers as well as hydrogen bonds that enhance the robustness of the electron transport path. The demonstrated lanthanide MOFs pave the way for the design of stable and conductive MOFs.

3.
Inorg Chem ; 62(5): 1781-1785, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608919

RESUMO

Two Keggin Fe13-oxo clusters, [Pr12Fe33(NO3)6(L-van)4(D-van)5(TEOA)12(µ3-OH)12(µ4-OH)12(µ4-O)28(H2O)4]·(ClO4)3·(NO3)·10H2O (1) and [Dy12Fe33(NO3)2(L-van)3(D-van)3(TEOA)12(µ3-OH)18(µ4-OH)6(µ4-O)28(H2O)9]·(ClO4)5·(NO3)6·15H2O (2), where L-van = l-valine, D-van = d-valine, and TEOA = triethanolamine, were prepared by using Ln3+ as a stabilizer. Cluster 1 crystallizes in a chiral space group of C2, while cluster 2 crystallizes in a centrosymmetric space group of Pnma. Dynamic magnetic measurements of 2 under a zero direct-current field reveal that 2 exhibits single-molecule-magnet characteristics with an energy barrier of 18.79 K. Significantly, the formation of the chiral cluster 1 is closely related to the larger radius of the Pr3+ ion.

4.
Inorg Chem ; 61(50): 20365-20372, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36475689

RESUMO

Lanthanide-iron clusters usually display interesting structures and outstanding magnetic properties. However, due to the high reactivity (acidity) of the Fe3+-H2O bond and the inability to form a terminal oxo ligand, the preparation of high-nuclearity Ln-Fe clusters is a great challenge. Herein, a series of lanthanide-iron-oxo clusters with the formulas [Y6Fe(HL)10(NO3)2(EG)2(µ3-OH)8(H2O)4]·ClO4·N-H2BDEA·2H2O (Y6Fe, 1, H2L = 3-hydroxypivalic acid, EG = ethylene glycol, N-H2BDEA = 2,2'-(butylimino)diethanol), [Ln8Fe3(H2TEOA)2(HTEOA)2(HL)10(µ3-OH)9(µ2-OH)(µ4-O)2(H2O)4]·(NO3)3·xH2O (Ln = Y, x = 13 for 2, Y8Fe3; Ln = Dy, x = 10 for 3, Dy8Fe3; H3TEOA = triethanolamine), and [Ln12Fe14(HL)16(µ3-OH)20(µ2-OH)12(µ4-O)12(H2O)12]·(NO3)6·xH2O (Ln = Y, x = 40 for 4, Y12Fe14; Ln = Dy, x = 30 for 5, Dy12Fe14) were obtained by adjusting the pH with different aminopolyols as organic alkalis. Structural analysis showed that a cubane-like unit was the main structural unit in compounds 1-5. Compound 1 was formed by two {Y3Fe(µ3-OH)4} units with the common vertices, and compounds 2 and 3 were formed by two {Y3Fe(µ3-OH)3(µ4-O)} units with the common vertices bridging a quadrilateral unit {Ln2Fe2(µ3-OH)3(µ2-OH)}. The basic structural units of cubane-like {Ln2Fe2(µ3-OH)(µ4-O)3}, triangular {LnFe2(µ3-OH)2(µ4-O)}, and neutral iron-hydroxyl {Fe(µ3-OH)(µ2-OH)2} were found in compounds 4 and 5. The universality of building blocks for the assembly has been demonstrated in high-nuclearity lanthanide-iron-oxo clusters. Meanwhile, the structural regulation of the lanthanide-iron-oxo clusters 1-5 was realized by adjusting the pH with different organic alkalis, which provided the reference for the effective synthesis of high-nuclearity lanthanide-iron-oxo clusters. Magnetic studies showed that 3 and 5 displayed a slow magnetic relaxation behavior.

5.
Inorg Chem ; 61(44): 17387-17391, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36282877

RESUMO

Three pairs of chiral Ln-Ag(I) clusters d/l-Ln3Ag5 with C3 symmetry were prepared by d/l-penicillamine as multidentate ligand bridged Ln3+ and Ag(I) ions. The chiral ligand induced the molecular cluster to be chiral, and the CD spectra of the chiral compounds d/l-Ln3Ag5 were slightly blue-shifted due to the lanthanide contraction. The studies of optical properties indicated that tunable photoluminescence from {AgS}-to-Ln3+ was achieved by introducing Ln3+ ions with different emission bands or regulating various excitation light.

6.
Inorg Chem ; 61(23): 8861-8869, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35653200

RESUMO

A family of nanoclusters, [Ln33(EDTA)12(OAc)2(CO3)4(µ3-OH)36(µ5-OH)4(H2O)38]·OAc·xH2O (x ≈ 50, Ln = Sm for 1; x ≈ 70, Ln = Eu for 2) and [Gd32(EDTA)12(OAc)2(C2O4)(CO3)2(µ3-OH)36(µ5-OH)4(H2O)36]·x(H2O) (x ≈ 70 for 3; H4EDTA = ethylene diamine tetraacetic acid), was prepared through the assembly of repeating subunits under the action of an anion template. The analysis of the structures showed that compounds 1 and 2 containing 33 Ln3+ ions were isostructural, which were constructed by three kinds of subunits in the presence of CO32- as an anion template, while compound 3 had a slightly different structure. Compound 3 containing 32 Gd3+ ions was formed by three types of subunits in the presence of CO32- and C2O42- as a mixed anion template. The CO32- anions came from the slow fixation of CO2 in the air. Meanwhile, one kind of high-nuclearity lanthanide clusters showed high chemical stability. The quantum Monte Carlo (QMC) calculation suggested that weak antiferromagnetic interactions were dominant between Gd3+ ions in 3. Magnetocaloric studies showed that compound 3 had a large entropy change of 43.0 J kg-1 K-1 at 2 K and 7 T. Surprisingly, compound 2 showed excellent recognition and detection effects for permanganate in aqueous solvents based on the fluorescence quenching phenomenon.

7.
Inorg Chem ; 60(9): 6790-6795, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33887138

RESUMO

A pure inorganic uranyl phosphate-polyoxometalate of Na17{Na@[(SbW9O33)2(UO2)6(PO3OH)6]}·xH2O (abbreviated as Na@U6P6, with x ≈ 46) featuring a sandwich-type structure was prepared using Keggin-type trilacunary [α-B-SbW9O33]9- units as building blocks, which were formed in situ by SbCl3 and Na2WO4·2H2O. Crystal structural analysis showed that six UO22+ cations and six PO3OH2- anions generated a wheel-like cluster unit with a Na+ center ([Na@(UO2)6(PO3OH)6]+) that is stabilized by two [α-B-SbW9O33]9- units. Na@U6P6 displayed a solid-state photoluminescence quantum yield of 33% at 300 K. The temperature-dependent fluorescence emission spectra showed that Na@U6P6 has temperature-sensitive fluorescence in which its emission intensity decreased by 77% as the temperature increased from 200 to 300 K. These results suggest that such uranyl phosphate-polyoxometalate clusters could serve as potential temperature-sensitive molecular materials.

8.
Chemistry ; 26(52): 11985-11988, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32614459

RESUMO

The formation mechanism of ferrihydrite is the key to understand its treatment of pollutants in waste water and purification of surface water and groundwater. Although emerging evidence suggests that formation of the ferrihydrite occurs through the aggregation of prenucleation clusters, rather than classical atom-by-atom growth, its formation mechanism remains unclear. Herein, an iron-oxo anionic cluster of [Fe22 (µ4 -O)8 (µ3 -OH)20 (µ2 -OH)18 (CH3 COO)16 (H2 O)2 ]4- viewed as a dimer of bivacant ß-Keggin-Fe13 clusters was for the first time obtained by using lanthanide ions as stabilizers. Upon dissolution in a mixed solution of isopropanol and water, the lacunary ß-Keggin-Fe13 cluster can transform into an α-Keggin-Fe13 cluster, distinctly demonstrating that the Keggin-Fe13 cluster rotational isomerization can be realized through the vacant Keggin-Fe13 cluster.

9.
Chemistry ; 26(6): 1388-1395, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31713263

RESUMO

Atomically precise molecular metal-oxo clusters provide ideal models to understand metal oxide surfaces, self-assembly, and form-function relationships. Devising strategies for synthesis and isolation of these molecular forms remains a challenge. Here, the synthesis of four Ln-Fe oxo clusters that feature the ϵ-{Fe13 } Keggin cluster in their core is reported. The {Fe13 } metal-oxo cluster motif is the building block of two important iron oxyhydroxyide phases in nature and technology, ferrihydrite (as the δ-isomer) and magnetite (the ϵ-isomer). The reported ϵ-{Fe13 } Keggin isomer as an isolated molecule provides the opportunity to study the formation of ferrihydrite and magnetite from this building unit. The four currently reported isostructural lanthanide-iron-oxo clusters are fully formulated [Y12 Fe33 (TEOA)12 (Hyp)6 (µ3 -OH)20 (µ4 -O)28 (H2 O)12 ](ClO4 )23 ⋅50 H2 O (1, Y12 Fe33 ), [Gd12 Fe33 (TEOA)12 (Hyp)6 (µ3 -OH)20 (µ4 -O)32 (H2 O)12 ](ClO4 )15 ⋅50 H2 O (2, Gd12 Fe33 ) and [Ln16 Fe29 (TEOA)12 (Hyp)6 (µ3 -OH)24 (µ4 -O)28 (H2 O)16 ](ClO4 )16 (NO3 )3 ⋅n H2 O (Ln=Y for 3, Y16 Fe29 , n=37 and Ln=Gd for 4, Gd16 Fe29 n=25; Hyp=trans-4-Hydroxyl-l-proline and TEOA=triethanolamine). The next metal layer surrounding the ϵ-{Fe13 } core within these clusters exhibits a similar arrangement as the magnetite lattice, and Fe and Ln can occupy the same positions. This provides the opportunity to construct a family of compounds and optimize magnetic exchange in these molecules through composition tuning. Small-angle X-ray scattering (SAXS) and high-resolution electrospray ionization mass spectrometry (HRESI-MS) show that these clusters are stable upon dissolution in both water and organic solvents, as a first step to performing further chemistry towards building magnetic arrays or investigating ferrihydrite and magnetite assembly from pre-nucleation clusters.

10.
Inorg Chem ; 59(3): 1959-1966, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950821

RESUMO

A series of heterometallic Ln-Cr clusters with the formulas [Ln5Cr2(H2L)2(OAc)6(µ3-OH)6(H2O)15](ClO4)7·xH2O (Ln = Gd and x = 33 for 1 and Ln = Dy and x = 21 for 2) and [Ln8Cr4(H2L)4(OAc)8(µ3-OH)16(µ4-O)1(H2O)8](Cl)(ClO4)5·10H2O (Ln = Gd for 3 and Ln = Dy for 4) was obtained through the reaction of the acetate ligands 2,2-dimethylolpropionic acid (H3L) and Ln(ClO4)3 in the presence of chromium salts with different anions under the same high pH conditions. X-ray analysis revealed that compound 1 contained a metal unit [Gd3Cr2] displaying the pentagonal bipyramid configuration and that compound 3 was templated by Cl- and ClO4- as a mixed anion template featuring a quadrangular structure. In compound 3, the 12 metal atoms were arranged in a wheel-shaped metal skeleton [Gd8Cr4], which was produced by 4 tetrahedral metal units [Gd3Cr] sharing vertices. The introduction of the mixed anion template increased the number of metal atoms in the Ln-Cr clusters. Magnetic calculations indicated that there was weak antiferromagnetic Gd···Cr coupling and weak ferromagnetic Gd···Gd coupling in 1, whereas both Gd···Cr and Gd···Gd in 3 exhibited weak antiferromagnetic interactions. Magnetothermal studies showed that compounds 1 and 3 displayed magnetic entropy changes of 25.2 J kg-1 K-1 at 5 K and 7 T and 33.8 J kg-1 K-1 at 2 K and 7 T, respectively.

11.
Acc Chem Res ; 51(2): 517-525, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29393625

RESUMO

High-nuclearity cluster-type metal complexes are a unique class of compounds, many of which have aesthetically pleasing molecular structures. Their interesting physical and chemical properties arise primarily from the electronic and/or magnetic interplay between the component metal ions. Among the extensive studies in the past two decades, those on lanthanide-containing clusters, lanthanide-exclusive or heterometallic with transition metal elements, are most notable. The research was driven by both the synthetic challenges for these generally elusive species and their intriguing magnetic properties, which are useful for the development of energy-efficient and environmentally friendly magnetic cooling technologies. Our efforts in this vein have been concentrated on developing rational synthetic methods for high-nuclearity lanthanide-containing clusters. By means of the now widely adopted approach of "ligand-controlled hydrolysis" of lanthanide ions, a great variety of cluster-type lanthanide hydroxide complexes had been prepared in the first half of this developing period (1999-2006). In this Account, our efforts since 2007 are summarized. These include (1) further development of synthetic strategies in order to expand the ligand scope and/or to increase the nuclearity (>25) of the cluster species and (2) magnetic studies pertinent to the pursuit of materials with a large magnetocaloric effect (MCE). Specifically, with the hope of expanding the family of ligands and producing clusters of previously unknown structures, we tested under hydrothermal or solvothermal conditions the use of readily available yet not commonly used ligands for controlling lanthanide hydrolysis; such ligands, carboxylates as mundane examples, tend to form insoluble complexes prior to any possible hydrolysis. We have also validated the use of preformed transition metal complexes as metalloligands for subsequent control of lanthanide hydrolysis toward heterometallic 3d-4f clusters. Furthermore, we demonstrated using ample examples that the presence of small anions as templates is essential to the assembly of high-nuclearity lanthanide-containing clusters and that maintaining a low concentration of the anion template(s) is a key to such success. It has been found that slow production/release of such anion templates by in situ ligand decomposition or absorption of atmospheric CO2 is effective in preventing precipitation of their lanthanide salts, allowing not only controllable lanthanide hydrolysis but also gradual and modular assembly of the giant cluster species. Magnetic studies targeting potential applications of such clusters as molecular magnetic coolers have also been conducted. The results are summarized in the second portion of this Account in an effort to establish a certain magneto-structure relationship. Of particular relevance is the possible correlation between MCE (evaluated using the isothermal magnetic entropy change, -ΔSM) and magnetic density, and the intracluster antiferromagnetic exchange coupling. We have also made some preliminary attempts at preparing processable and practically useful materials in the form of a monodisperse core-shell nanostructure. We succeeded in encapsulating a single nanosized heterometallic molecular cluster in a nanoshell of silica. It was found that such passivation not only helped stabilize the cluster but also reduced the magnetic interactions between individual clusters. These effects are reflected in the slightly enhanced value of -ΔSM for the core-shell composite over the parent unprotected cluster.

12.
Inorg Chem ; 58(13): 8494-8499, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247866

RESUMO

Based on the anion template and chiral ligand inducting role, two series of high-nuclearity 3 d-4 f heterometallic clusters with formulas [NO3@Ln6Cu24(µ3-OH)30(µ2-OH)3(OAc)6( R/ S-L)12(H2O)24](NO3)14· x(H2O) (Ln = Dy, x = 30 for 1a( R-L) and 1b( S-L); Ln = Tb, x = 40 for 2a( R-L) and 2b( S-L)) and (Et3NH)4[Ln6Cu12(µ3-OH)14(µ2-Cl)6Cl12( R/ S-L)12]Cl2· x(H2O) (Ln = Dy, x = 28 for 3a( R-L) and 3b( S-L); Ln = Tb, x = 33 for 4a ( R-L) and 4b( S-L); HL = ( R/ S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), have been synthesized and characterized. Structural analysis reveals that the metal skeleton of compounds 1 and 2 display a Ln6Cu12 octahedral inner core encapsulated by six outer Cu2 units. In the Ln6Cu12 octahedron, 6 Ln3+ ions located at the six vertices and 12 inner Cu2+ ions located at the 12 edges of octahedron, and one NO3- locates in the center of the octahedron. The metal core of compounds 3 and 4 can be viewed as a Ln6 octahedron encapsulated by six Cu2 units. It is interesting that the different inorganic anions involved in the reaction result in the difference in the structures of 1 to 2 and 3 to 4. Circular dichroism spectra of 1-4 display obvious mirror symmetry effect at 600-800 nm of d-d transition of Cu2+, suggesting that the chirality transferred from chiral R- and S-ligand to Cu2+ ions in this system. Notably, the CD peak at the Cu2+ d-d transition position of Ln6Cu12 cluster is obviously blue-shifted compared with that of Ln6Cu24 due to the different coordinated environments of Cu2+. Magnetic studies indicate that 1a and 2a show weak ferromagnetic interactions, while 3a and 4a display antiferromagnetic interactions.

13.
Gen Physiol Biophys ; 38(5): 389-397, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31595881

RESUMO

Stroke is a leading cause of disability and death in the worldwide. Therefore, prevention of stroke is critically important. Genistein, a natural phytoestrogen extracted from soybeans, has been found to be a potential neuroprotective agent for stroke prevention. However, the role of genistein and its underlying mechanism in ovariectomized rats has been rarely evaluated. In this study, ovariectomized rats were treated with genistein (10 mg/kg) or vehicle daily for two weeks before they received middle cerebral artery occlusion (MCAO) and reperfusion. Seventy-two hours after reperfusion, the neurological function was evaluated by Garcia test, infarct volumes were detected by 2,3,5-triphenyltetrazolium chloride staining; and neuronal damage and cell apoptosis were detected by Nissl and Tunel staining in the ischemic penumbra, respectively. In addition, Western blotting was used to detect the activity of PI3K-Akt-mTOR signal pathway in the ischemic penumbra in different groups. And we found that genistein treatment in ovariectomized rats significantly improved neurological outcomes, reduced infarct volumes, decreased neuronal damage and cell apoptosis, and increased the activity of PI3K-Akt-mTOR signal pathway. Our findings indicated that treatment genistein could alleviate neuronal apoptosis induced by cerebral ischemia in ovariectomized rats via promoting the activity of PI3K-Akt-mTOR signal pathway, which provides a new molecular mechanism for the neuroprotective effects of genistein against stroke.


Assuntos
Genisteína/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Animais , Feminino , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ovariectomia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
J Am Chem Soc ; 139(50): 18178-18181, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29200280

RESUMO

Nanoscale inorganic wheel-shaped structures are one of the most striking types of molecular aggregations. Here, we report the synthesis of a gigantic lanthanide wheel cluster containing 140 Gd3+ atoms. As the largest lanthanide cluster reported thus far, {Gd140} features an attractive wheel-like structure with 10-fold symmetry. The nanoscopic molecular wheel possesses the largest diameter of 6.0 nm and displays high stability in solution, which allows direct visualization by scanning transmission electron microscopy. The newly discovered lanthanide {Gd140} cluster represents a new member of the molecular wheel family.

15.
Inorg Chem ; 56(4): 2037-2041, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28165221

RESUMO

Three homometallic high-nuclearity clusters, formulated as [(CO3)2@Ln37(LH3)8(CH3COO)21(CO3)12(µ3-OH)41(µ2-H2O)5(H2O)40]·(ClO4)21·(H2O)100 (abbreviated as Ln37, Ln = Gd (1); Tb (2); Eu (3), LH3 = 1,2,3-cyclohexanetriol) and featuring a double cage-like structure, were obtained through the reaction of 1,2,3-cyclohexanetriol, acetate ligand, and Ln(ClO4)3. The largest odd-numbered lanthanide cluster Gd37 exhibits an entropy change (-ΔSm) of 38.7 J kg-1 K-1.

16.
Inorg Chem ; 56(14): 8439-8445, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28649836

RESUMO

A series of heterometallic 3d-4f clusters, formulated as Na17[Ln3(H2O)5NiII(H2O)3(Sb4O4)(SbW9O33)3(NiIIW6O24)(WO2)3(CH3COO)]·(H2O)65 [abbreviated as Ln3Ni2, where Ln = La3+ (1), Pr3+ (2), and Nd3+ (3)], K5Na11[Ln3(H2O)3NiII3(H2O)6(SbW9O33)3(WO4)(CO3)]·(H2O)40 [abbreviated as Ln3Ni3, where Ln = La3+ (4), Pr3+ (5), and Nd3+ (6)], and K3Na27[Ln3NiII9(µ3-OH)9(SbW9O33)2(PW9O34)3(CH3COO)3]·(H2O)80 [abbreviated as Ln3Ni9, where Ln = Dy3+ (7) and Er3+ (8)], were obtained through the reaction of the lacunary {SbW9O33} precursor with Ln(NO3)3·6H2O and NiCl2·6H2O in a NaAc/HAc buffer in the presence of different anions. Single-crystal X-ray structure analysis revealed that compounds 1-3 possessed tetrameric architectures featuring three Keggin-type {SbW9O33} and one Anderson-type {NiIIW6O24} building blocks encapsulating one {Sb4O4} cluster, three WO2 units, three Ln3+ metal ions, and two Ni2+ metal ions. Compounds 4-6 displayed cyclic trimeric aggregates of three {SbW9O33} units enveloping one CO32--templated trinuclear [Ln3(CO3)]7+ and one WO42--templated [NiII3(WO4)]+ unit. Compounds 7 and 8 exhibited unique pentameric architectures that featured three 3d-4f cubane clusters of {LnNi3(µ3-OH)3} capped by two {SbW9O33} and three {PW9O34} building blocks. Interestingly, the structural regulation of the heterometallic 3d-4f clusters in the polyoxometalate systems with trimers, tetramers, and pentamers was realized by introducing different anions.

17.
Inorg Chem ; 56(1): 110-113, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27936647

RESUMO

We report two nonanuclear lanthanide complexes, [Ln9(µ4-O)(µ3-OH)8(LH)4(OAc)4(H2O)12]·5ClO4·24H2O (Ln = Gd, 1; Dy, 2), where LH2- is the doubly deprotonated chiral ligand Chromogen I (2-acetamido-2,3-dideoxy-D-erythro-hex-2-enofuranose), one of the many products from the dehydration of N-acetyl-D-glucosamine (GlcNAc). Mass spectroscopic studies established the solution stability of these clusters. Through hydrogen bonding, the cluster complex self-organizes into a nanostructured 54-metal cagelike assembly featuring six of its units occupying the vertices of an octahedron. Free Chromogen I can be obtained in pure form and high yield by a straightforward workup of the cluster complex. This is the first report of dehydrating GlcNAc without the need of a catalyst or forcing conditions.

18.
Angew Chem Int Ed Engl ; 56(38): 11475-11479, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28719109

RESUMO

The largest Ln-Fe metal cluster [Gd12 Fe14 (µ3 -OH)12 (µ4 -OH)6 (µ4 -O)12 (TEOA)6 (CH3 COO)16 (H2 O)8 ]⋅(CH3 COO)2 (CH3 CN)2 ⋅(H2 O)20 (1) and the core-shell monodisperse metal cluster of 1 a@SiO2 (1 a=[Gd12 Fe14 (µ3 -OH)12 (µ4 -OH)6 (µ4 -O)12 (TEOA)6 (CH3 COO)16 (H2 O)8 ]2+ ) were prepared. Experimental and theoretical studies on the magnetic properties of 1 and 1 a@SiO2 reveal that encapsulation of one cluster into one silica nanosphere not only effectively decreases intermolecular magnetic interactions but also significantly increases the zero-field splitting effect of the outer layer Fe3+ ions.

19.
Angew Chem Int Ed Engl ; 55(14): 4532-6, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26923173

RESUMO

Monodisperse metal clusters provide a unique platform for investigating magnetic exchange within molecular magnets. Herein, the core-shell structure of the monodisperse molecule magnet of [Gd52 Ni56 (IDA)48 (OH)154 (H2 O)38 ]@SiO2 (1 a@SiO2 ) was prepared by encapsulating one high-nuclearity lanthanide-transition-metal compound of [Gd52 Ni56 (IDA)48 (OH)154 (H2 O)38 ]⋅(NO3 )18 ⋅164 H2 O (1) (IDA=iminodiacetate) into one silica nanosphere through a facile one-pot microemulsion method. 1 a@SiO2 was characterized using transmission electron microscopy, N2 adsorption-desorption isotherms, and inductively coupled plasma-atomic emission spectrometry. Magnetic investigation of 1 and 1 a revealed J1 =0.25 cm(-1) , J2 =-0.060 cm(-1) , J3 =-0.22 cm(-1) , J4 =-8.63 cm(-1) , g=1.95, and z J=-2.0×10(-3)  cm(-1) for 1, and J1 =0.26 cm(-1) , J2 =-0.065 cm(-1) , J3 =-0.23 cm(-1) , J4 =-8.40 cm(-1) g=1.99, and z J=0.000 cm(-1) for 1 a@SiO2 . The z J=0 in 1 a@SiO2 suggests that weak antiferromagnetic coupling between the compounds is shielded by silica nanospheres.

20.
Mar Drugs ; 12(12): 5993-6002, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25517217

RESUMO

Three new asperentin-type compounds, 6-O-α-d-ribosylasperentin (1) and 6-O-α-d-ribosyl-8-O-methylasperentin (2) and 5-hydroxyl-6-O-methylasperentin (3), along with asperentin (4) and its known analogues (5-9), were isolated from a halotolerant Aspergillus sp. strain F00785, an endotrophic fungus from marine alga. Their structures were determined using extensive NMR and HRESIMS spectroscopic analysis, including the X-ray crystallographic data for the assignment of the absolute configurations of compound 9. Compound 4 exhibited highly potent inhibitory activity against crop pathogens, Colletotrichum gleosporioides Penz. and Colletotrichum gleosporioides (Penz.) Sacc.


Assuntos
Aspergillus/química , Fungos/química , Isocumarinas/química , Isocumarinas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Colletotrichum/efeitos dos fármacos , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Biologia Marinha , Estramenópilas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA