Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(18): 9552-9566, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37697433

RESUMO

Intrinsic DNA properties including bending play a crucial role in diverse biological systems. A recent advance in a high-throughput technology called loop-seq makes it possible to determine the bendability of hundred thousand 50-bp DNA duplexes in one experiment. However, it's still challenging to assess base-resolution sequence bendability in large genomes such as human, which requires thousands of such experiments. Here, we introduce 'BendNet'-a deep neural network to predict the intrinsic DNA bending at base-resolution by using loop-seq results in yeast as training data. BendNet can predict the DNA bendability of any given sequence from different species with high accuracy. To explore the utility of BendNet, we applied it to the human genome and observed DNA bendability is associated with chromatin features and disease risk regions involving transcription/enhancer regulation, DNA replication, transcription factor binding and extrachromosomal circular DNA generation. These findings expand our understanding on DNA mechanics and its association with transcription regulation in mammals. Lastly, we built a comprehensive resource of genomic DNA bendability profiles for 307 species by applying BendNet, and provided an online tool to assess the bendability of user-specified DNA sequences (http://www.dnabendnet.com/).

2.
Carcinogenesis ; 39(3): 471-481, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29361151

RESUMO

Freeze-dried black raspberry (BRB) powder is considered as a potential cancer chemopreventive agent. In this study, we fed azoxymethane (AOM)/dextran sodium sulfate (DSS)-treated C57BL/6J mice with a diet containing BRB anthocyanins for 12 weeks, and this led to a reduction in colon carcinogenesis. These animals had consistently lower tumor multiplicity compared with AOM/DSS-treated mice not receiving BRB anthocyanins. In AOM/DSS-treated mice, the number of pathogenic bacteria, including Desulfovibrio sp. and Enterococcus spp., was increased significantly, whereas probiotics such as Eubacterium rectale, Faecalibacterium prausnitzii and Lactobacillus were dramatically decreased, but BRB anthocyanins supplement could reverse this imbalance in gut microbiota. BRB anthocyanins also caused the demethylation of the SFRP2 gene promoter, resulting in increased expression of SFRP2, both at the mRNA and protein levels. Furthermore, the expression levels of DNMT31 and DNMT3B, as well as of p-STAT3 were downregulated by BRB anthocyanins in these animals. Taken together, these results suggested that BRB anthocyanins could modulate the composition of gut commensal microbiota, and changes in inflammation and the methylation status of the SFRP2 gene may play a central role in the chemoprevention of CRC.


Assuntos
Antocianinas/farmacologia , Neoplasias Colorretais , Microbioma Gastrointestinal/efeitos dos fármacos , Proteínas de Membrana/genética , Rubus , Animais , Azoximetano/toxicidade , Quimioprevenção , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Metilação de DNA/efeitos dos fármacos , Desmetilação/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Compostos Fitoquímicos/farmacologia
3.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951519

RESUMO

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Assuntos
Antineoplásicos , Sistemas CRISPR-Cas , Resistencia a Medicamentos Antineoplásicos , Irinotecano , Oxaliplatina , Proteínas Serina-Treonina Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Oxaliplatina/farmacologia , Irinotecano/farmacologia , Sistemas CRISPR-Cas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Animais , Neoplasias/genética , Neoplasias/tratamento farmacológico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
4.
J Agric Food Chem ; 63(26): 6027-34, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26089141

RESUMO

Green asparagus (Asparagus officinalis L.) is a vegetable with numerous nutritional properties. In the current study, a total of 23 compounds were isolated from green asparagus, and 9 of these compounds were obtained from this genus for the first time. Preliminary data showed that the ethyl acetate (EtOAc)-extracted fraction of green asparagus exerted a stronger inhibitory effect on the growth of t-HSC/Cl-6 cells, giving an IC50 value of 45.52 µg/mL. The biological activities of the different compounds isolated from the EtOAc-extracted fraction with respect to antihepatic fibrosis were investigated further. Four compounds, C3, C4, C10, and C12, exhibited profound inhibitory effect on the activation of t-HSC/Cl-6 cells induced by TNF-α. The activation t-HSC/Cl-6 cells, which led to the production of fibrotic matrix (TGF-ß1, activin C) and accumulation of TNF-α, was dramatically decreased by these compounds. The mechanisms by which these compounds inhibited the activation of hepatic stellate cells appeared to be associated with the inactivation of TGF-ß1/Smad signaling and c-Jun N-terminal kinases, as well as the ERK phosphorylation cascade.


Assuntos
Asparagus/química , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Proliferação de Células/efeitos dos fármacos , Células Estreladas do Fígado/citologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/fisiopatologia , Camundongos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA