Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BMC Gastroenterol ; 22(1): 426, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138341

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) has become a global public health problem. The prevalence of IBD in China increased annually in past two decades. METHODS: This study was to translate and validate the rating form of IBD patients' concerns (RFIPC), and to describe disease-related worries and concerns of patients with IBD. The simplified Chinese version of the RFIPC was developed according to translation and back-translation procedure. Patients with IBD were consecutively enrolled from the First Affiliated Hospital of Guangzhou University of Chinese Medicine. The participants were assessed using the RFIPC and the Short Inflammatory Bowel Disease Questionnaire (SIBDQ). Internal consistency, test-retest reliability, measurement error, confirmatory factor analysis (CFA) and correlation of the RFIPC with the SIBDQ were performed to evaluate the psychometric characteristics of the RFIPC. RESULTS: A total of 116 patients with IBD, 73 with ulcerative colitis (UC) and 43 with Crohn's disease (CD), were enrolled in this study. Thirty-seven of them recompleted the questionnaires for the second time between 7 and 14 days after the first interview. The results of CFA indicated the original structure of the RFIPC was reasonable. Cronbach's alpha value of the RFIPC were 0.97. The intraclass correlation coefficients of four domains ranged from 0.85 to 0.92. The standard error of measurement was 7.10. The correlation coefficients between total score of the RFIPC and the SIBDQ score ranged from - 0.54 to - 0.70. Median total score of the RFIPC was 39.4 (IQR 24.0-59.3). Patients with severe symptoms reported higher scores of the RFIPC. The uncertain nature of disease, having surgery, having an ostomy bag, developing cancer, feeling out of control, being a burden on others and financial difficulties were highest concerns of patients with IBD. Comparing with patients with UC, patients with CD had more concerns of the ability to have children and being treated as different (P < 0.05). CONCLUSIONS: The simplified Chinese version of RFIPC is a valid and reliable tool. It could be used for assessing disease-related worries and concerns of patients with IBD in China. Specific concerns of patients with UC and CD are different, therefore, health workers should consider the specific needs of UC and CD patients.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Criança , China , Doença Crônica , Colite Ulcerativa/diagnóstico , Doença de Crohn/diagnóstico , Humanos , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários , Traduções
2.
Genes Dis ; 11(3): 101026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38292186

RESUMO

The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (ß-catenin dependent) and non-canonical (ß-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.

3.
Bioact Mater ; 34: 51-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38186960

RESUMO

Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-ß, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.

4.
Bioresour Technol ; 371: 128592, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36632850

RESUMO

Zero-valent iron (Fe0)-modified biochar (BFN) was prepared via low-temperature pyrolysis of tea residue (TR) and ferric nitrate hexahydrate (FN) coupled with NaOH activation for the removal of methylene blue (MB). BFN exhibited a specific surface area of 382.66 m2·g-1, an average pore diameter of 4.97 nm and an equilibrium adsorption capacity as high as 452.5 mg·g-1 of 0.33 g·L-1 toward 150 mg·L-1 MB within 60 min at 30 °C and pH 7.0. The recovered MB is far below of the removal rate in each of adsorption-desorption cycle because the removal mechanism is that MB molecular was firstly chemically adsorbed, then it was reduced and mineralized by BFN with the formation of nitrate, sulfate, CO2 and H2O.


Assuntos
Ferro , Poluentes Químicos da Água , Ferro/química , Azul de Metileno/química , Carvão Vegetal/química , Adsorção , Chá , Poluentes Químicos da Água/análise , Cinética
5.
Nutrients ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678274

RESUMO

Plenty of studies have shown that tea has an effect of inhibiting gynecologic tumors. However, there still remained controversy of the association between tea and gynecologic tumors in epidemiological studies. In this study, PubMed, Embase, and Cochrane Database were used to search the literature from 1 January 1960 to 26 December 2022 to investigate the association between tea intake and gynecologic cancer risk. In total, 19 cohort studies with 2,020,980 subjects and 12,155 gynecological tumor cases were retrieved. The pooled relative risk (RR) of gynecologic tumor for tea intake was 1.00 (95% CI: 0.96-1.04). RRs were 0.94 (95% CI: 0.88-1.01) for ovarian cancer, 1.02 (95% CI: 0.97-1.07) for endometrial cancer, and 1.06 (95% CI: 0.91-1.23) for cervical cancer. Subgroup analyses were adopted based on the tea type and geographic location. Interestingly, significant preventive impact of non-herbal tea on ovarian cancer (pooled relative risk: 0.67; 95% CI: 0.55-0.81) was found, especially for black tea (pooled relative risk: 0.64; 95% CI: 0.51-0.80). Dose-response analysis indicated that although it is not statistically significant, a decreasing trend of ovarian cancer risk could be observed when the tea consumption was 1.40 to 3.12 cups/day. In conclusion, our findings suggested that ovarian cancer, but not other gynecologic cancers, could possibly be prevented by drinking non-herbal tea. In addition, the preventive impact of green tea on gynecologic cancer seemed to be relatively weak and needs further cohorts to validate it.


Assuntos
Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias dos Genitais Femininos/epidemiologia , Neoplasias dos Genitais Femininos/prevenção & controle , Chá , Estudos de Coortes , Risco , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/prevenção & controle , Fatores de Risco
6.
Cancer Metab ; 11(1): 9, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443106

RESUMO

BACKGROUND: Excessive hepatic glycogen accumulation benefits tumorigenesis and cancer cell survival. We previously reported that BMP4 has the strongest ability to promote glycogenesis among the 14 BMPs in hepatocytes and augmented hepatocellular carcinoma (HCC) cell survival under hypoxia and hypoglycemia conditions by promoting the glycolysis pathway. However, the mechanism underlying BMP4's effect on glycogenesis in HCC remains elusive. METHODS: The expression of BMP4 and SLC2A1 were acquired by analyzing the TCGA-LIHC dataset, as well as by immunohistochemical analysis of the 40 pairs of human HCC samples and para-tumor tissues. Gene expressions were detected by qPCR, immunoflurorescence staining, and Western blotting. Overexpression and silencing of BMP4 were accomplished through adenoviruses Ad-B4 and Ad-siB4 infection. Hepatic glycogen was detected by PAS staining. SLC2A1 (GLUT1) function was blocked by the inhibitor BAY-876. ChIP assay was used to determine the binding of SMADs to the promoter region of SLC2A1 in HCC cells. Lastly, the in vivo effect of BMP4-regulated SLC2A1 on HCC tumor growth was assessed in a xenograft model of HCC. RESULTS: The elevated expression of BMP4 in HCC tumor tissues was highly correlated with hepatic glycogen accumulation in clinical samples. SLC2A1 was highly expressed in HCC tumor tissue and correlated with clinical stage and prognosis. Exogenous BMP4 augmented glycogen accumulation and upregulated the expression of glycogen synthesis-related genes in Huh7 and HepG2 cells, both of which were effectively blunted by SLC2A1inhibitor BAY-876. In mechanism, BMP4 activated SMAD5 to regulate the promoter of SLC2A1to enhance its expression. The in vivo xenograft experiments revealed that BMP4 promoted glycogen accumulation and tumor growth, which were effectively diminished by BAY-876. CONCLUSION: These results demonstrate that BMP4 upregulates glycogen synthesis through the SMAD/SLC2A1 (GLUT1) signaling axis in HCC cells, which may be exploited as novel therapeutic targets for HCC treatment.

8.
J Exp Clin Cancer Res ; 42(1): 295, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940999

RESUMO

BACKGROUND: Ovarian cancer is commonly associated with a poor prognosis due to metastasis and chemoresistance. PINK1 (PTEN-induced kinase 1) is a serine/threonine kinase that plays a crucial part in regulating various physiological and pathophysiological processes in cancer cells. METHODS: The ATdb database and "CuratedOvarianData" were used to evaluate the effect of kinases on ovarian cancer survival. The gene expression in ovarian cancer cells was detected by Western blot and quantitative real-time PCR. The effects of gene knockdown or overexpression in vitro were evaluated by wound healing assay, cell transwell assay, immunofluorescence staining, immunohistochemistry, and flow cytometry analysis. Mass spectrometry analysis, protein structure analysis, co-immunoprecipitation assay, nuclear-cytoplasmic separation, and in vitro kinase assay were applied to demonstrate the PINK1-PTEN (phosphatase and tensin homolog) interaction and the effect of this interaction. The metastasis experiments for ovarian cancer xenografts were performed in female BALB/c nude mice. RESULTS: PINK1 was strongly associated with a poor prognosis in ovarian cancer patients and promoted metastasis and chemoresistance in ovarian cancer cells. Although the canonical PINK1/PRKN (parkin RBR E3 ubiquitin protein ligase) pathway showed weak effects in ovarian cancer, PINK1 was identified to interact with PTEN and phosphorylate it at Serine179. Remarkably, the phosphorylation of PTEN resulted in the inactivation of the phosphatase activity, leading to an increase in AKT (AKT serine/threonine kinase) activity. Moreover, PINK1-mediated phosphorylation of PTEN impaired the nuclear import of PTEN, thereby enhancing the cancer cells' ability to resist chemotherapy and metastasize. CONCLUSIONS: PINK1 interacts with and phosphorylates PTEN at Serine179, resulting in the activation of AKT and the inhibition of PTEN nuclear import. PINK1 promotes ovarian cancer metastasis and chemotherapy resistance through the regulation of PTEN. These findings offer new potential therapeutic targets for ovarian cancer management.


Assuntos
Neoplasias Ovarianas , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Humanos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resistencia a Medicamentos Antineoplásicos , Camundongos Nus , Proteínas Serina-Treonina Quinases , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Monoéster Fosfórico Hidrolases , Serina , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
9.
Pediatr Discov ; 1(2)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38370424

RESUMO

Glycogen storage disease type I (GSDI) is an inherited metabolic disorder characterized by a deficiency of enzymes or proteins involved in glycogenolysis and gluconeogenesis, resulting in excessive intracellular glycogen accumulation. While GSDI is classified into four different subtypes based on molecular genetic variants, GSDIa accounts for approximately 80%. GSDIa and GSDIb are autosomal recessive disorders caused by deficiencies in glucose-6-phosphatase (G6Pase-α) and glucose-6-phosphate-transporter (G6PT), respectively. For the past 50 years, the care of patients with GSDI has been improved following elaborate dietary managements. GSDI patients currently receive dietary therapies that enable patients to improve hypoglycemia and alleviate early symptomatic signs of the disease. However, dietary therapies have many limitations with a risk of calcium, vitamin D, and iron deficiency and cannot prevent long-term complications, such as progressive liver and renal failure. With the deepening understanding of the pathogenesis of GSDI and the development of gene therapy technology, there is great progress in the treatment of GSDI. Here, we review the underlying molecular genetics and the current clinical management strategies of GSDI patients with an emphasis on promising experimental gene therapies.

10.
Front Med (Lausanne) ; 9: 1064106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714133

RESUMO

Objectives: For Crohn's disease (CD), the alternation of the active phase and inactive phase may be related to humoral immunity and cellular immunity. This study aims to understand the characteristics of immune cells in patients with active CD (CDa) and inactive CD (CDin). Methods: Mass cytometry (CyTOF) and single-cell RNA sequencing (scRNA-seq) data about CDa, CDin, and healthy control (HC) were included. CyTOF analysis was performed to capture gated subsets, including T cells, T regulatory (Treg) cells, B cells, innate immune cells, and natural killer (NK) cells. Differential analysis was used to identify different immune cell subsets among CDa, CDin, and HC. ScRNA-seq analysis was used to verify the results of CyTOF. CD-related signaling pathways were obtained using KEGG pathway enrichment analysis. CellChat analysis was used to infer the cell communication network among immune cell subsets. Results: Compared to patients with CDin, patients with CDa had higher abundances of CD16+CD38+CD4+CXCR3+CCR6+ naive T cells, HLA-DR+CD38+IFNγ+TNF+ effector memory (EM) T cells, HLA-DR+IFNγ+ naive B cells, and CD14++CD11C+IFNγ+IL1B+ monocytes. KEGG analysis showed the similarity of pathway enrichment for the earlier four subsets, such as thermogenesis, oxidative phosphorylation, and metabolic pathways. The patients with CDin were characterized by an increased number of CD16+CD56dimCD44+HLA-DR+IL22+ NK cells. Compared to HC, patients with CDa demonstrated a low abundance of HLA-DR+CCR6+ NK cells and a high abundance of FOXP3+CD44+ EM Tregs. CellChat analysis revealed the interaction network of cell subsets amplifying in CDa compared with CDin. Conclusion: Some immune subsets cells were identified for CDa and CDin. These cells may be related to the occurrence and development of CD and may provide assistance in disease diagnosis and treatment.

11.
Bioeng Transl Med ; 7(3): e10306, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176604

RESUMO

Effective and safe liver-directed gene therapy has great promise in treating a broad range of liver diseases. While adenoviral (Ad) vectors have been widely used for efficacious in vivo gene delivery, their translational utilities are severely limited due to the short duration of transgene expression and solicitation of host immune response. Used as a promising polymeric vehicle for drug release and nucleic acid delivery, carboxymethyl chitosan (CMC) is biocompatible, biodegradable, anti-microbial, inexpensive, and easy accessible. Here, by exploiting its biocompatibility, controlled release capability and anti-inflammatory activity, we investigated whether CMC can overcome the shortcomings of Ad-mediated gene delivery, hence improving the prospect of Ad applications in gene therapy. We demonstrated that in the presence of optimal concentrations of CMC, Ad-mediated transgene expression lasted up to 50 days after subcutaneous injection, and at least 7 days after intrahepatic injection. Histologic evaluation and immunohistochemical analysis revealed that CMC effectively alleviated Ad-induced host immune response. In our proof-of-principle experiment using the CCl4-induced experimental mouse model of chronic liver damage, we demonstrated that repeated intrahepatic administrations of Ad-IL10 mixed with CMC effectively mitigated the development of hepatic fibrosis. Collectively, these results indicate that CMC can improve the prospect of Ad-mediated gene therapy by diminishing the host immune response while allowing readministration and sustained transgene expression.

12.
Bioact Mater ; 9: 523-540, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34820586

RESUMO

Skin injury is repaired through a multi-phase wound healing process of tissue granulation and re-epithelialization. Any failure in the healing process may lead to chronic non-healing wounds or abnormal scar formation. Although significant progress has been made in developing novel scaffolds and/or cell-based therapeutic strategies to promote wound healing, effective management of large chronic skin wounds remains a clinical challenge. Keratinocytes are critical to re-epithelialization and wound healing. Here, we investigated whether exogenous keratinocytes, in combination with a citrate-based scaffold, enhanced skin wound healing. We first established reversibly immortalized mouse keratinocytes (iKera), and confirmed that the iKera cells expressed keratinocyte markers, and were responsive to UVB treatment, and were non-tumorigenic. In a proof-of-principle experiment, we demonstrated that iKera cells embedded in citrate-based scaffold PPCN provided more effective re-epithelialization and cutaneous wound healing than that of either PPCN or iKera cells alone, in a mouse skin wound model. Thus, these results demonstrate that iKera cells may serve as a valuable skin epithelial source when, combining with appropriate biocompatible scaffolds, to investigate cutaneous wound healing and skin regeneration.

13.
Am J Cancer Res ; 11(3): 793-811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791154

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide although its pathogenic mechanism remains to be fully understood. Unlike normal cells, most cancer cells rely on aerobic glycolysis and are more adaptable to the microenvironment of hypoxia and hypoglycemia. Bone Morphogenetic Protein 4 (BMP4) plays important roles in regulating proliferation, differentiation, invasion and migration of HCC cells. We have recently shown that BMP4 plays an important role in regulating glucose metabolism although the effect of BMP4 on glucose metabolic reprogramming of HCC is poorly understood. In this study, we found that BMP4 was highly expressed in HCC tumor tissues, as well as HCC cell lines that were tolerant to hypoxia and hypoglycemia. Mechanistically, we demonstrated that BMP4 protected HCC cells from hypoxia and hypoglycemia by promoting glycolysis since BMP4 up-regulated glucose uptake, the lactic acid production, the ATP level, and the activities of rate limiting enzymes of glycolysis (including HK2, PFK and PK). Furthermore, we demonstrated that BMP4 up-regulated HK2, PFKFB3 and PKM2 through the canonical Smad signal pathway as SMAD5 directly bound to the promoter of PKM. Collectively, our findings shown that BMP4 may play an important role in regulating glycolysis of HCC cells under hypoxia and hypoglycemia condition, indicating that novel therapeutics may be developed to target BMP4-regulated glucose metabolic reprogramming in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA