Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 242: 107773, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37734218

RESUMO

BACKGROUND: With a large number of accidents caused by the decline in the vigilance of operators, finding effective automatic vigilance monitoring methods is a work of great significance in recent years. Based on physiological signals and machine learning algorithms, researchers have opened up a path for objective vigilance estimation. METHODS: Sparse representation (SR)-based recognition algorithms with excellent performance and simple models are very promising approaches in this field. This paper aims to study the adaptability and performance improvement of truncated l1 distance (TL1) kernel on SR-based algorithm in the context of physiological signal vigilance estimation. Compared with the traditional radial basis function (RBF), the TL1 kernel has good adaptiveness to nonlinearity and is suitable for the discrimination of complex physiological signals. A recognition framework based on TL1 and SR theory is proposed. Firstly, the inseparable physiological features are mapped to the reproducing kernel Krein space through the infinite-dimensional projection of the TL1 kernel. Then the obtained kernel matrix is converted into the symmetric positive definite matrix according to the eigenspectrum approaches. Finally, the final prediction result is obtained through the sparse representation regression process. RESULTS: We verified the performance of the proposed framework on the popular SEED-VIG dataset containing physiological signals (electroencephalogram and electrooculogram) associated with vigilance. In the experimental results, the TL1 kernel is superior to the RBF kernel in both performance and kernel parameter stability. CONCLUSIONS: This demonstrates the effectiveness of the TL1 kernel in distinguishing physiological signals and the excellent vigilance estimation capability of the proposed framework. Moreover, the contribution of our research motivates the development of physiological signal recognition based on kernel methods.


Assuntos
Algoritmos , Eletroencefalografia , Eletroencefalografia/métodos , Aprendizado de Máquina
2.
Neuroscience ; 524: 37-51, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36707018

RESUMO

Numerous blood oxygenation level-dependent (BOLD) imaging studies have shown that generalized anxiety disorder (GAD) can lead to abnormal activation of specific brain regions in patients. However, these methods lack sufficient temporal resolution to explain the underlying brain dynamics of GAD. The electroencephalogram (EEG) microstate allows us to explore brain dynamics at the subsecond level. We performed microstate analysis and source localization on the EEG data of 15 GADs and 14 healthy controls (HCs). We found two kinds of noncanonical microstate topologies (MS-4 and MS-5) in the episodic recall tasks. Compared with HCs, the duration and coverage of MS-5 were significantly reduced in GADs and positively correlated with the GAD-7 scores. The results of source localization showed obvious activation in the prefrontal lobe, parietal lobe, temporal lobe, and fusiform gyri. Moreover, we propose an improved capsule network to capture EEG spatial features and combine them with temporal parameters of microstates for more reliable GAD detection. The sensor-level EEG data and the source-level EEG data obtained by source reconstruction are used as input to the model. The optimal configuration combined the spatial features of source-level data with microstate features and achieved the highest classification accuracy. Collectively, the statistical results indicated remarkable differences in dynamic brain parameters between the two groups, and patients with GAD may have abnormalities in their higher sensory cortex that affect the processing of anxiety signals. Furthermore, our proposed fusion framework provides a reliable method for GAD automatic detection.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Córtex Pré-Frontal , Transtornos de Ansiedade
3.
Healthcare (Basel) ; 9(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801750

RESUMO

In this paper, a random-forest-based method was proposed for the classification and localization of Attention-Deficit/Hyperactivity Disorder (ADHD), a common neurodevelopmental disorder among children. Experimental data were magnetic resonance imaging (MRI) from the public case-control dataset of 3D images for ADHD-200. Each MRI image was a 3D-tensor of 121×145×121 size. All 3D matrices (MRI) were segmented into the slices from each of three orthogonal directions. Each slice from the same position of the same direction in the training set was converted into a vector, and all these vectors were composed into a designed matrix to train the random forest classification algorithm; then, the well-trained RF classifier was exploited to give a prediction label in correspondence direction and position. Diagnosis and location results can be obtained upon the intersection of these three prediction matrices. The performance of our proposed method was illustrated on the dataset from New York University (NYU), Kennedy Krieger Institute (KKI) and full datasets; the results show that the proposed methods can archive more accuracy identification in discrimination of ADHD, and can be extended to the other practices of diagnosis. Moreover, another suspected region was found at the first time.

4.
Mater Sci Eng C Mater Biol Appl ; 107: 110317, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761217

RESUMO

In this study, the internal microstructure of the forewings of Allomyrina dichotoma is investigated by scanning electron microscopy (SEM) analysis. The results of SEM test show that the inner microstructure of the forewings possesses an integrated sandwich-like plate supported by trabeculae, which is composed of upper and lower skins of unequal thicknesses, and a honeycomb core with trabeculae. Beetle forewing is a natural composite material composed of chitin fibres and proteins. Also, based on the micro dimensions of the forewings observed by SEM, two groups of micro finite element (FE) models of the forewings (i.e., core with trabeculae and core without trabeculae) are established to compare and comprehensively understand the effect of trabeculae on the mechanical properties of the forewings. The FE simulation results demonstrate that the trabeculae could effectively (1) improve the stress state on the upper skin, lower skin, and core layer of the forewings, (2) improve the overall bending stiffness of the forewings, (3) enhance the peeling resistance between the skins and core layer, and (4) improve the buckling strength of the thin-walled core layer. The unique forewing structure of the Allomyrina dichotoma can provide an excellent bionic model for optimizing the traditional honeycomb panel structure.


Assuntos
Besouros , Asas de Animais/anatomia & histologia , Asas de Animais/ultraestrutura , Animais , Fenômenos Biomecânicos , Osso Esponjoso/anatomia & histologia , Osso Esponjoso/ultraestrutura , Análise de Elementos Finitos , Microscopia Eletrônica de Varredura , Modelos Anatômicos , Resistência ao Cisalhamento , Pele/anatomia & histologia , Pele/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA