Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 138: 506-515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135416

RESUMO

Toxic arsenic (As) and trace element selenium (Se) are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood. An As- and Se- oxidizing bacterium, Agrobacterium sp. T3F4, was applied to a native seleniferous As-polluted soil to investigate As/Se uptake by the vegetable Brassica rapa L. and As-Se interaction as mediated by strain T3F4. The Se content in the aboveground plants was significantly enhanced by 34.1%, but the As content was significantly decreased by 20.5% in the T3F4-inoculated pot culture compared to the control (P < 0.05). Similar result was shown in treatment with additional 5 mg/kg of Se(IV) in soil. In addition, the As contents in roots were significantly decreased by more than 35% under T3F4 or Se(IV) treatments (P<0.05). Analysis of As-Se-bacterium interaction in a soil simulation experiment showed that the bioavailability of Se significantly increased and As was immobilized with the addition of the T3F4 strain (P < 0.05). Furthermore, an As/Se co-exposure hydroponic experiment demonstrated that As uptake and accumulation in plants was reduced by increasing Se(IV) concentrations. The 50% growth inhibition concentration (IC50) values for As in plants were increased about one-fold and two-fold under co-exposure with 5 and 10 µmol/L Se(IV), respectively. In conclusion, strain T3F4 improves Se uptake but decreases As uptake by plants via oxidation of As and Se, resulting in decrease of soil As bioavailability and As/Se competitive absorption by plants. This provides a potential bioremediation strategy for Se biofortification and As immobilization in As-polluted soil.


Assuntos
Arsênio , Brassica rapa , Selênio , Agrobacterium , Arsênio/toxicidade , Bactérias , Solo , Oxirredução
2.
PeerJ ; 12: e17273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708362

RESUMO

Gradual pollen presentation is a plant reproductive mechanism to improve pollination efficiency and accuracy and promote outcrossing. Vaccinium corymbosum 'Bluecrop' has a typical gradual pollen presentation mechanism. 'Bluecrop' exhibits an inverted bell-shaped flower with a white coloration. By investigating the flower syndrome, pollination characteristics, pollination efficiency, and breeding system of 'Bluecrop', this study aims to explore the adaptive significance of these traits. The results showed 'Bluecrop' released pollen gradually through anther poricidal dehiscence. Among different pollinators, Apis mellifera and Bombus can pollinate effectively, and the mechanism of gradual pollen presentation significantly improved the efficiency of pollen transfer. This characteristic limits the amount of pollen removed by the pollinators and prolongs pollen presentation, thus attracting more pollinators and thereby increasing male fitness. The nectar secretion of 'Bluecrop' is gradual, with a large nectar production and a long phase of nectar secretion, enhance visitation frequencies and the chances of successful pollination. At the same time, campanulate corolla can protect pollen as well as nectar from waste due to environmental factors and other effects. The breeding system of 'Bluecrop' relies mainly on outcrossing because of its low affinity for self-fertilization and good interaction with pollinating insects. Thus, the special floral syndrome and the mechanism of secondary pollen presentation are significant in improving pollination efficiency and promoting the reproductive success of 'Bluecrop' by outcrossing. It can provide a certain theoretical basis for the future propagation breeding of 'Bluecrop'.


Assuntos
Flores , Pólen , Polinização , Abelhas/fisiologia , Flores/genética , Flores/fisiologia , Animais , Mirtilos Azuis (Planta) , Néctar de Plantas , Melhoramento Vegetal
3.
Radiat Prot Dosimetry ; 117(4): 365-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15972359

RESUMO

Two batches of diodes, with different structural ratios (the ratio of area and thickness), were made using different manufacturing processes. The energy response of the first batch to 15 kinds of monoenergetic neutrons ranging from 180 keV to 17.56 MeV was tested, and the neutron source response of both batches to 239Pu-Be neutron source was measured. The energy deposition in the diodes irradiated by 1 keV to 20 MeV monoenergetic neutrons was calculated with simulation procedure. The response curve of the experimental results showed an approximately similar trend to that of theoretical computation. Based on the results of the neutron source response experiments, it was concluded that the response of fast neutron varied linearly with the structural ratio of the detectors.


Assuntos
Nêutrons Rápidos , Monitoramento de Radiação/instrumentação , Semicondutores , Transferência Linear de Energia , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA