Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 193(5): 567-578, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080661

RESUMO

Protein kinase CK2 is a constitutively active and ubiquitously expressed serine/threonine kinase that is closely associated with various types of cancers, autoimmune disorders, and inflammation. However, the role of CK2 in psoriasis remains unknown. Herein, the study indicated elevated expression of CK2 in skin lesions from patients with psoriasis and from psoriasis-like mice. In the psoriasis-like mouse model, the CK2-specific inhibitor CX-4945 ameliorated imiquimod-induced psoriasis symptoms with reduced proliferation, abnormal differentiation, inflammatory cytokine production (especially IL-17A) of keratinocytes, and infiltration of γδ T cells. In in vitro studies, exogenous CK2 promoted hyperproliferation and abnormal differentiation of human keratinocytes, which were reversed by the suppression of CK2 with CX-4945 or siRNA. Furthermore, knockdown of CK2 reduced IL-17A expression and abolished IL-17A-induced proliferation and inflammatory cytokine expression in keratinocytes. Interestingly, IL-17A increased the expression of CK2 in keratinocytes, thereby establishing a positive feedback loop. In addition, suppression of CK2 inhibited the activation of STAT3 and Akt signaling pathways in human keratinocytes and imiquimod-induced psoriatic lesions of mice. These findings indicate that a highly expressed CK2 level in the skin lesions is required in the development of psoriasis by promoting epidermal hyperplasia, abnormal differentiation, and inflammatory response via regulation of the STAT3 and Akt signaling pathways. CK2 may be a target for the treatment of psoriasis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Psoríase , Animais , Humanos , Camundongos , Caseína Quinase II/metabolismo , Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Imiquimode/efeitos adversos , Interleucina-17/metabolismo , Queratinócitos/patologia , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase/induzido quimicamente , Pele/metabolismo , Fator de Transcrição STAT3/metabolismo
2.
Popul Health Metr ; 22(1): 10, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831424

RESUMO

BACKGROUND: There are significant geographic inequities in COVID-19 case fatality rates (CFRs), and comprehensive understanding its country-level determinants in a global perspective is necessary. This study aims to quantify the country-specific risk of COVID-19 CFR and propose tailored response strategies, including vaccination strategies, in 156 countries. METHODS: Cross-temporal and cross-country variations in COVID-19 CFR was identified using extreme gradient boosting (XGBoost) including 35 factors from seven dimensions in 156 countries from 28 January, 2020 to 31 January, 2022. SHapley Additive exPlanations (SHAP) was used to further clarify the clustering of countries by the key factors driving CFR and the effect of concurrent risk factors for each country. Increases in vaccination rates was simulated to illustrate the reduction of CFR in different classes of countries. FINDINGS: Overall COVID-19 CFRs varied across countries from 28 Jan 2020 to 31 Jan 31 2022, ranging from 68 to 6373 per 100,000 population. During the COVID-19 pandemic, the determinants of CFRs first changed from health conditions to universal health coverage, and then to a multifactorial mixed effect dominated by vaccination. In the Omicron period, countries were divided into five classes according to risk determinants. Low vaccination-driven class (70 countries) mainly distributed in sub-Saharan Africa and Latin America, and include the majority of low-income countries (95.7%) with many concurrent risk factors. Aging-driven class (26 countries) mainly distributed in high-income European countries. High disease burden-driven class (32 countries) mainly distributed in Asia and North America. Low GDP-driven class (14 countries) are scattered across continents. Simulating a 5% increase in vaccination rate resulted in CFR reductions of 31.2% and 15.0% for the low vaccination-driven class and the high disease burden-driven class, respectively, with greater CFR reductions for countries with high overall risk (SHAP value > 0.1), but only 3.1% for the ageing-driven class. CONCLUSIONS: Evidence from this study suggests that geographic inequities in COVID-19 CFR is jointly determined by key and concurrent risks, and achieving a decreasing COVID-19 CFR requires more than increasing vaccination coverage, but rather targeted intervention strategies based on country-specific risks.


Assuntos
COVID-19 , Saúde Global , Aprendizado de Máquina , SARS-CoV-2 , Humanos , COVID-19/mortalidade , Fatores de Risco , Pandemias , Vacinas contra COVID-19 , Vacinação
3.
Artigo em Inglês | MEDLINE | ID: mdl-38804845

RESUMO

BACKGROUND AND AIM: Hydronidone (HDD) is a novel pirfenidone derivative developed initially to reduce hepatotoxicity. Our previous studies in animals and humans have demonstrated that HDD treatment effectively attenuates liver fibrosis, yet the underlying mechanism remains unclear. This study aimed to investigate whether HDD exerts its anti-fibrotic effect by inducing apoptosis in activated hepatic stellate cells (aHSCs) through the endoplasmic reticulum stress (ERS)-associated mitochondrial apoptotic pathway. METHODS: The carbon tetrachloride (CCl4)- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced liver fibrosis models were used for in vivo studies. In vitro studies were conducted using the human hepatic stellate cell line LX-2. The apoptotic effect of HDD on aHSCs was examined using TUNEL and flow cytometry assays. The small interfering RNA (siRNA) technique was employed to downregulate the expression of interest genes. RESULTS: HDD treatment significantly promoted apoptosis in aHSCs in both the CCl4- and DDC-induced liver fibrosis in mice and LX-2 cells. Mechanistic studies revealed that HDD triggered ERS and subsequently activated the IRE1α-ASK1-JNK pathway. Furthermore, the influx of cytochrome c from the mitochondria into the cytoplasm was increased, leading to mitochondrial dysfunction and ultimately triggering apoptosis in aHSCs. Notably, inhibition of IRE1α or ASK1 by siRNA partially abrogated the pro-apoptotic effect of HDD in aHSCs. CONCLUSIONS: The findings of both in vivo and in vitro studies suggest that HDD induces apoptosis in aHSCs via the ERS-associated mitochondrial apoptotic pathway, potentially contributing to the amelioration of liver fibrosis.

4.
Liver Int ; 43(11): 2523-2537, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37641479

RESUMO

BACKGROUND AND PURPOSE: Liver fibrosis is a wound-healing reaction that eventually leads to cirrhosis. Hydronidone is a new pyridine derivative with the potential to treat liver fibrosis. In this study, we explored the antifibrotic effects of hydronidone and its potential mode of action. METHODS: The anti-hepatic fibrosis effects of hydronidone were studied in carbon tetrachloride (CCl4 )- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- induced animal liver fibrosis. The antifibrotic mechanisms of hydronidone were investigated in hepatic stellate cells (HSCs). The antifibrotic effect of hydronidone was further tested after Smad7 knockdown in HSCs in mouse models of fibrosis. RESULTS: In animal models, hydronidone attenuated liver damage and collagen accumulation, and reduced the expression of fibrosis-related genes. Hydronidone decreased the expression of fibrotic genes in HSCs. Impressively, hydronidone significantly upregulated Smad7 expression and promoted the degradation of transforming growth factor ß receptor I (TGFßRI) in HSCs and thus inhibited the TGFß-Smad signalling pathway. Specific knockdown of Smad7 in HSCs in vivo blocked the antifibrotic effect of hydronidone. CONCLUSION: Hydronidone ameliorates liver fibrosis by inhibiting HSCs activation via Smad7-mediated TGFßRI degradation. Hydronidone is a potential drug candidate for the treatment of liver fibrosis.


Assuntos
Cirrose Hepática , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Camundongos , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/tratamento farmacológico , Receptor do Fator de Crescimento Transformador beta Tipo I , Fator de Crescimento Transformador beta/metabolismo , Proteína Smad7/efeitos dos fármacos , Proteína Smad7/metabolismo
5.
Bioorg Med Chem ; 83: 117232, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940608

RESUMO

α-Mangostin (α-MG) has demonstrated to display potent activities against Gram-positive bacterial. However, the contribution of phenolic hydroxyl groups of α-MG to the antibacterial activity remains obscure, severely hampering selection of structure modification to develop more potential α-MG-based anti-bacterial derivatives. Herein, twenty-one α-MG derivatives are designed, synthesized and evaluated for the antibacterial activities. The structure activity relationships (SARs) reveal that the contribution of the phenolic groups ranks as C3 > C6 > C1, and the phenolic hydroxyl group at C3 is essential to the antibacterial activity. Of note, compared to the parent compound α-MG, 10a with one acetyl at C1 exhibits the higher safety profiles due to its higher selectivity and no hemolysis, and the more potent antibacterial efficacy in an animal skin abscess model. Our evidences further present that, in comparison with α-MG, 10a has a stronger ability in depolarizing membrane potentials and leads to more leakage of bacterial proteins, consistent with the results observed by transmission electron microscopy (TEM). Transcriptomics analysis demonstrates those observations possibly relate to disturbed synthesis of proteins participating in the biological process of membrane permeability and integrity. Collectively, our findings provide a valuable insight for developing α-MG-based antibacterial agents with little hemolysis and new action mechanism via structural modifications at C1.


Assuntos
Antibacterianos , Xantonas , Animais , Antibacterianos/química , Microscopia Eletrônica de Transmissão , Bactérias , Relação Estrutura-Atividade , Fenóis , Xantonas/química , Testes de Sensibilidade Microbiana
6.
J Eur Acad Dermatol Venereol ; 37(12): 2509-2516, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37528440

RESUMO

BACKGROUND: Atopic-like dermatitis (ALD) is a common side effect of interleukin-17A (IL-17A) inhibitors. OBJECTIVE: To determine the prevalence, risk factors, outcomes and treatment of ALD in a cohort of psoriasis patients treated with IL-17A inhibitors. METHODS: This retrospective study included 226 psoriasis patients treated with an IL-17A inhibitor in our dermatology department between July 2020 and July 2022. The patients were reviewed over 2 years. A logistic regression model in rare events data (relogit) was used to predict the risk factors for ALD. RESULTS: Of the 226 patients, 14 had ALD. Data including age, body mass index, IL-17A inhibitor use, personal and family history of atopic disease, pet ownership history, and immunoglobulin E (IgE) levels were analysed using the relogit regression model. It indicated a personal history of atopic disease (odd ratio [OR] 27.830, 95% confidence interval [CI] 3.801-203.770; p = 0.001) and elevated IgE levels (OR 5.867, 95% CI 1.131-30.434; p = 0.035) as independent predictors of incident ALD. In one patient, anti-IL-17A therapy was discontinued, and treatment was switched to tofacitinib. Thirteen patients who continued with IL-17A inhibitor were treated with topical therapy and/or antihistamines, and their ALD was partially or completely resolved. CONCLUSION: In this study, the incidence rate of ALD was 6.19%. Elevated IgE levels and a personal history of atopic disease were found to be the risk factors for ALD. Our study findings suggest that treatment should be provided based on the severity of psoriasis and incident ALD. Prior to treatment, psoriasis patients who have the risk factors for ALD should be informed of the possible development of ALD, and alternative psoriatic therapeutic options should be considered if severe ALD develops.


Assuntos
Dermatite Atópica , Psoríase , Humanos , Interleucina-17 , Seguimentos , Inibidores de Interleucina , Estudos Retrospectivos , Psoríase/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Imunoglobulina E
7.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762115

RESUMO

Combining pentamidine with Gram-positive-targeting antibiotics has been proven to be a promising strategy for treating infections from Gram-negative bacteria (GNB). However, which antibiotics pentamidine can and cannot synergize with and the reasons for the differences are unclear. This study aimed to identify the possible mechanisms for the differences in the synergy of pentamidine with rifampicin, linezolid, tetracycline, erythromycin, and vancomycin against GNB. Checkerboard assays were used to detect the synergy of pentamidine and the different antibiotics. To determine the mechanism of pentamidine, fluorescent labeling assays were used to measure membrane permeability, membrane potential, efflux pump activity, and reactive oxygen species (ROS); the LPS neutralization assay was used to evaluate the target site; and quantitative PCR was used to measure changes in efflux pump gene expression. Our results revealed that pentamidine strongly synergized with rifampicin, linezolid, and tetracycline and moderately synergized with erythromycin, but did not synergize with vancomycin against E. coli, K. pneumoniae, E. cloacae, and A. baumannii. Pentamidine increased the outer membrane permeability but did not demolish the outer and inner membranes, which exclusively permits the passage of hydrophobic, small-molecule antibiotics while hindering the entry of hydrophilic, large-molecule vancomycin. It dissipated the membrane proton motive force and inactivated the efflux pump, allowing the intracellular accumulation of antimicrobials that function as substrates of the efflux pump, such as linezolid. These processes resulted in metabolic perturbation and ROS production which ultimately was able to destroy the bacteria. These mechanisms of action of pentamidine on GNB indicate that it is prone to potentiating hydrophobic, small-molecule antibiotics, such as rifampicin, linezolid, and tetracycline, but not hydrophilic, large-molecule antibiotics like vancomycin against GNB. Collectively, our results highlight the importance of the physicochemical properties of antibiotics and the specific mechanisms of action of pentamidine for the synergy of pentamidine-antibiotic combinations. Pentamidine engages in various pathways in its interactions with GNB, but these mechanisms determine its specific synergistic effects with certain antibiotics against GNB. Pentamidine is a promising adjuvant, and we can optimize drug compatibility by considering its functional mechanisms.


Assuntos
Rifampina , Vancomicina , Linezolida/farmacologia , Vancomicina/farmacologia , Rifampina/farmacologia , Pentamidina/farmacologia , Escherichia coli , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Tetraciclina/farmacologia , Eritromicina
8.
Medicina (Kaunas) ; 59(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36837614

RESUMO

Background and Objectives: Disturbance of tryptophan (Trp) and fatty acid (FA) metabolism plays a role in the pathogenesis of psychiatric disorders. However, quantitative analysis and comparison of plasma Trp metabolites and medium- and long-chain fatty acids (MCFAs and LCFAs) in adult patients with major depressive disorder (MDD) and schizophrenia (SCH) are limited. Materials and Methods: Clinical symptoms were assessed and the level of Trp metabolites and MCFAs and LCFAs for plasma samples from patients with MDD (n = 24) or SCH (n = 22) and healthy controls (HC, n = 23) were obtained and analyzed. Results: We observed changes in Trp metabolites and MCFAs and LCFAs with MDD and SCH and found that Trp and its metabolites, such as N-formyl-kynurenine (NKY), 5-hydroxyindole-3-acetic acid (5-HIAA), and indole, as well as omega-3 polyunsaturated fatty acids (N3) and the ratio of N3 to omega-6 polyunsaturated fatty acids (N3: N6), decreased in both MDD and SCH patients. Meanwhile, levels of saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) decreased in SCH patients, and there was a significant difference in the composition of MCFAs and LCFAs between MDD and SCH patients. Moreover, the top 10 differential molecules could distinguish the two groups of diseases from HC and each other with high reliability. Conclusions: This study provides a further understanding of dysfunctional Trp and FA metabolism in adult patients with SCH or MDD and might develop combinatorial classifiers to distinguish between these disorders.


Assuntos
Transtorno Depressivo Maior , Ácidos Graxos Ômega-3 , Esquizofrenia , Humanos , Adulto , Triptofano , Reprodutibilidade dos Testes , Ácidos Graxos/metabolismo
9.
J Antimicrob Chemother ; 77(5): 1301-1305, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35165715

RESUMO

OBJECTIVES: To investigate the antibacterial activity of the novel ß-lactamase inhibitor BLI-489 combined with imipenem or meropenem against diverse carbapenemase-producing carbapenem-resistant Enterobacterales (CRE) in vivo and in vitro. METHODS: Twenty-five CRE strains, including Klebsiella pneumoniae (n = 10), Escherichia coli (n = 6) and Enterobacter cloacae (n = 9), were used in chequerboard assays to evaluate the synergistic effect of BLI-489 combined with imipenem or meropenem. A cytotoxicity test was used to detect the toxicity of BLI-489 monotherapy or combination therapy. Three isolates producing class A, B and D carbapenemases, respectively, were selected to further confirm the synergistic effect in vitro by time-kill assays and in vivo by the Galleria mellonella infection model. RESULTS: Chequerboard assays demonstrated that BLI-489 combined with imipenem had a synergistic effect on 7/10, 7/9 and 5/6 of carbapenem-resistant K. pneumoniae, E. cloacae and E. coli, respectively, while BLI-489 and meropenem had a synergistic effect on 8/10, 9/9 and 6/6 of the isolates, respectively. No cytotoxicity was observed when BLI-489 was used alone or in combination with imipenem or meropenem at the test concentrations. In the time-kill assays, combination therapy had a synergistic effect on DC5114 carrying blaKPC-2, FK8401 carrying blaNDM-5 and CG996 carrying blaOXA-23. The synergistic effect in vivo was confirmed by the G. mellonella infection model. CONCLUSIONS: The novel ß-lactamase inhibitor BLI-489 possesses a synergistic effect against diverse carbapenemase-producing CRE combined with imipenem or meropenem.


Assuntos
Imipenem , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , Carbapenêmicos/farmacologia , Escherichia coli , Imipenem/farmacologia , Klebsiella pneumoniae , Lactamas , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Monobactamas/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/farmacologia
10.
J Appl Microbiol ; 132(2): 1008-1017, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34464994

RESUMO

AIMS: Quorum sensing (QS) is the intercellular communication used by bacteria to regulate collective behaviour. QS regulates the production of virulence factors in many bacterial species and is considered to be an attractive target for reducing bacterial pathogenicity. Chlorogenic acid (CA) is abundant in vegetables, fruits, and traditional Chinese medicine, and has multiple activities. This study aimed to investigate the QS quenching activity of CA against clinically isolated multidrug-resistant Pseudomonas aeruginosa. METHODS AND RESULTS: The results showed that CA inhibited the mobility of bacteria, reduced the production of pyocyanin, and inhibited the activity of elastase. Furthermore, crystal violet staining and scanning electron microscope experiments showed that CA inhibited the formation of multidrug-resistant P. aeruginosa biofilm. CA at or below the concentration of 2560 µg/mL exerted negligible cytotoxicity to RAW264.7 cells. The study also examined the expression of QS-related genes, including lasI, lasR, rhlI, rhlR, pqsA, and pqsR in P. aeruginosa and found that the expression of these genes was down-regulated under CA treatment. CONCLUSIONS: The study showed that CA could be used as an anti-virulence factor for treating clinical P. aeruginosa infection. SIGNIFICANCE AND IMPACT OF STUDY: For the first time, this study took clinically isolated multidrug-resistant P. aeruginosa as the experimental object, and suggested that CA might be an effective antimicrobial compound targeting QS in treating P. aeruginosa infection, thus providing a new therapeutic direction for treating bacterial infection and effectively alleviating bacterial resistance.


Assuntos
Antibacterianos , Ácido Clorogênico , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Biofilmes , Ácido Clorogênico/farmacologia , Camundongos , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum , Células RAW 264.7 , Fatores de Virulência/genética
11.
Bioorg Chem ; 119: 105515, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896919

RESUMO

Natural products are a promising and underappreciated reservoir for the preferred chemical scaffolds in the search of antidiabetic drugs. In this study twenty-one EGC-based derivatives selective to inhibit human pancreatic α-amylase (HPA), the enzyme at the top of the starch digestion pyramid, have been designed and synthesized in terms of the lead myricetin-caffeic acid conjugate 1 reported ever. We focus on methylation of caffeic acid, length of a liker, a double bond contained in the linker on the inhibition activity and selectivity of EGC-based conjugates. As a result, methylation of caffeic acid and the length of a linker affect significantly the activity and selectivity of EGC-based conjugates, but the effect of a double in caffeic acid is limited. Conjugate 2a-1 having a six-carbon-atom linker fused to EGC and caffeic acid demonstrates the most ponent inhibitory activity to HPA and its selectivity towards HPA over α-glucosidase by far superior to that construct 1. Molecular docking studies reveal that conjugate 2a-1 accommodates well to the active site of HPA with four hydrogen bonds in the form of the preorganization of two moieties EGC and caffeic acid via π-stacking interaction. Collectively, conjugating caffeic acid and EGC with an appropriate linker possibly provides a new strategy for finding the specific HPA inhibitors in the discovery of anti-diabetes mellitus drugs.


Assuntos
Ácidos Cafeicos/farmacologia , Catequina/análogos & derivados , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/química , Catequina/síntese química , Catequina/química , Catequina/farmacologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , alfa-Amilases/metabolismo
12.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500661

RESUMO

Transition metal oxides (TMOs) can provide high theoretical capacitance due to the change of multiple valence states of transition metals. However, their intrinsic drawbacks, including poor electrical conductivity, lower energy density, and huge volume expansion, will result in the pulverization of electrode materials and restricted electrochemical kinetics, thus leading to poor rate capability and rapid capacity fading. Composite electrodes based on transition metal oxides and carbon-based materials are considered to be promising candidates for overcoming these limitations. Herein, we reported a preparation method of hybrid ZIFs derived Zn-doped Co3O4/carbon (Zn-Co3O4/C-230) particles semi-embedded in wood-derived carbon skeleton for integrated electrodes. A large specific surface area, excellent conductivity, and electrochemical stability provide a larger electrochemical activity and potential window for the electrode. Prepared Zn-Co3O4@CW-230 electrode (0.6 mm thick) displays ultrahigh area specific capacitances of 7.83 and 6.46 F cm-2 at the current densities of 5 and 30 mA cm-2, respectively. Moreover, a symmetric supercapacitor assembled by two identical Zn-Co3O4@CW-230 electrodes delivers a superior area-specific capacitance of 2.61 F cm-2 at the current densities of 5 mA cm-2 and great energy densities of 0.36 mWh cm-2 (6.0 mWh cm-3) at 2.5 mW cm-2, while maintaining 97.3% of initial capacitance over 10,000 cycles. It notably outperforms those of most carbon-based metal oxides, endowing the Zn-Co3O4@CW-230 with extensive prospects for practical application.


Assuntos
Carbono , Madeira , Óxidos , Zinco
13.
BMC Microbiol ; 21(1): 208, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238225

RESUMO

BACKGROUND: The emergence of carbapenem-resistant and colistin-resistant ECC pose a huge challenge to infection control. The purpose of this study was to clarify the mechanism of the carbapenems and colistin co-resistance in Enterobacter cloacae Complex (ECC) strains. RESULTS: This study showed that the mechanisms of carbapenem resistance in this study are: 1. Generating carbapenemase (7 of 19); 2. The production of AmpC or ESBLs combined with decreased expression of out membrane protein (12 of 19). hsp60 sequence analysis suggested 10 of 19 the strains belong to colistin hetero-resistant clusters and the mechanism of colistin resistance is increasing expression of acrA in the efflux pump AcrAB-TolC alone (18 of 19) or accompanied by a decrease of affinity between colistin and outer membrane caused by the modification of lipid A (14 of 19). Moreover, an ECC strain co-harboring plasmid-mediated mcr-4.3 and blaNDM-1 has been found. CONCLUSIONS: This study suggested that there is no overlap between the resistance mechanism of co-resistant ECC strains to carbapenem and colistin. However, the emergence of strain co-harboring plasmid-mediated resistance genes indicated that ECC is a potential carrier for the horizontal spread of carbapenems and colistin resistance.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Genes Bacterianos/genética , Plasmídeos/genética
14.
J Nutr ; 151(12): 3865-3873, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34510220

RESUMO

BACKGROUND: Several studies have reported that dietary and serum concentrations of vitamin D and cholesterol are correlated with mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, little is known about whether 25 hydroxyvitamin D [25(OH)D], lipids, and oxysterols are related to cognitive function. OBJECTIVE: This study sought to explore the relations between 25(OH)D, lipids, oxysterols, and cognitive function. METHODS: In this study, about 209 MCI patients and 209 age- and gender-matched healthy controls were recruited from the Shanxi province of China (49.5% male; median [IQR] age: 63 [59-66] y). Serum concentrations of 25(OH)D, lipids, and oxysterols were measured using ultra-performance LC-MS. Cognitive performance was determined via comprehensive mental, verbal, and auditory cognitive tests. Dietary information was collected using a semiquantitative FFQ and 3 consecutive days of 24-h dietary recalls. Logistic regression analyses, Spearman's correlation, and partial correlation analyses were used to explore correlation between the variables. RESULTS: Participants with vitamin D deficiency [serum 25(OH)D <20.0 ng/mL] were 3 times more likely to develop MCI compared to those with adequate vitamin D (≥30 ng/mL) concentrations. The AUC of 25(OH)D was 0.72 and the cut-off was 16.5 ng/mL (sensitivity:  50.3%,  specificity: 84.4%). Serum 25(OH)D concentrations were negatively correlated with total cholesterol (TC) (r = -0.19, P = 0.02), LDL-cholesterol (r = -0.17, P = 0.04), and 24S,25-epoxycholesterol (24S,25-epoxy-CHO) (r = -0.21, P = 0.01). Conversely, the Montreal Cognitive Assessment (MoCA) (r = 0.185, P < 0.001) and symbol digit modalities test (SDMT) (r = 0.11, P = 0.03) scores were positively correlated with serum 25(OH)D concentrations. CONCLUSION: The study identified significant differences in serum 25(OH)D concentrations between MCI patients and cognitive healthy controls, and there was a correlation between serum concentrations of 25(OH)D, lipids, and oxysterols and cognitive impairment among people. This study was registered at the Chinese Clinical Trial Registry as ChiCTR1900025452.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Deficiência de Vitamina D , Idoso , Calcifediol , Disfunção Cognitiva/etiologia , Feminino , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Vitamina D , Deficiência de Vitamina D/complicações
15.
Bioorg Chem ; 116: 105295, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34455300

RESUMO

We previously discovered extrahepatic cytochrome P450 1B1 (CYP1B1) degraders able to overcome drug resistance toward docetaxel using a PROTACs technology, however, the underexplored structure activity relationships and poor water solubility posed a major hurdle in the development of CYP1B1 degraders. Herein, continuous efforts are made to develop more promising α-naphthoflavone (ANF)-derived chimeras for degrading CYP1B1. Guided by the strongest ANF-derived CYP1B1 degrader 3a we ever reported, 17 ANF analogues are designed and synthesized to evaluate the CYP1B1 degradation and resultant resistance reversal. In degrading CYP1B1 and sensitizing drug resistance, 4d with a 1, 5-cis triazole coupling mode at (C3') of B ring of ANF exhibited the similar potency as 3a carrying a 1, 4-trans triazole fragment at (C4') of B ring, but more obvious selectivity of 4d toward CYP1B1 over CYP1A2 is observed. When an oxygen was inserted into the linker of 4d, 4f demonstrated better water solubility, a more potent ability in degrading CYP1B1 and reversing drug resistance, and a promising selectivity. Collectively, a substitution position, an alkyne-azide cyclization and a liker type significantly affect the ability of ANF-thalidomide conjugates in eliminating drug resistance of CYP1B1-expressing DU145 (DU145/CY) cells to docetaxel via targeted CYP1B1 degradation.


Assuntos
Antineoplásicos/farmacologia , Benzoflavonas/farmacologia , Citocromo P-450 CYP1B1/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Benzoflavonas/síntese química , Benzoflavonas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1B1/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Estrutura Molecular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Solubilidade , Relação Estrutura-Atividade
16.
Xenobiotica ; 51(9): 977-982, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34176447

RESUMO

Leonurine hydrochloride (LH) is derived from an ingredient of Leonurus japonicus Houtt which is widely used for diseases in women.The influence of LH on the activity of cytochrome P450 (CYPs) enzymes was investigated in this study.The effect of LH on CYPs enzyme activities were studied using the enzyme-selective substrates phenacetin (1A2), coumarin (2A6), diclofenac (2C9), S-mephenytoin (2C19), paclitaxel (2C8), dextromethorphan (2D6), chlorzoxazone (2E1) and testosterone (3A4). The IC50 value was calculated to express the strength of inhibition. The inhibition of CYPs was fitted with competitive or non-competitive inhibition models and corresponding parameters were also obtained.LH exerted inhibitory effects on the activity of CYP1A2, 2D6, and 3A4 with the IC50 values of 18.05, 15.13, and 20.09 µM, respectively. The obtained results showed that LH inhibited the activity of CYP1A2 and CYP2D6 via competitive manners (Ki = 8.667 µM and Ki = 7.805 µM, respectively), while LH attenuated the CYP3A4 activity via a non-competitive manner (Ki = 9.507 µM). Moreover, LH showed time-dependent inhibition on CYP3A4 with the KI/Kinact value of 4.31/0.044 min-1·µM-1.The inhibition of CYP1A2, CYP2D6, and CYP3A4 by LH, demonstrated in vitro, indicated the potential herb-drug interaction. Therefore, pharmacokinetic interactions involving LH and CYP1A2 or CYP2D6 or CYP1A2 substrates are likely to occur.


Assuntos
Inibidores das Enzimas do Citocromo P-450 , Microssomos Hepáticos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450 , Ácido Gálico/análogos & derivados , Humanos
17.
Pharm Biol ; 59(1): 1551-1555, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34757861

RESUMO

CONTEXT: Rhynchopylline and pellodendrine are major extractions of commonly used Chinese medicine in gynaecology. The interaction between these two compounds could affect treatment efficiency and even result in toxicity during their co-administration in gynaecological prescription. OBJECTIVE: The pharmacokinetic interaction between rhynchopylline and pellodendrine and the potential mechanism were investigated in this study. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into four groups to investigate the pharmacokinetic interaction between rhynchopylline (30 mg/kg) and pellodendrine (20 mg/kg) with single dose of these two drugs as the control. The transport of rhynchopylline was evaluated in the Caco-2 cell model. Additionally, the metabolic stability and the activity of corresponding CYP450 enzymes were assessed in rat liver microsomes. RESULTS: The pharmacokinetic profile of rhynchopylline was dramatically affected by pellodendrine with the increased area under the pharmacokinetic curve (3080.14 ± 454.54 vs. 1728.08 ± 220.598 µg/L*h), Cmax (395.1 ± 18.58 vs. 249.1 ± 16.20 µg/L), prolonged t1/2 (9.74 ± 2.94 vs. 4.81 ± 0.42 h) and the reduced clearance rate (from 11.39 ± 1.37 to 5.67 ± 1.42 L/h/kg). No significant changes were observed in the pharmacokinetics of pellodendrine. The transport of rhynchopylline was significantly inhibited by pellodendrine with a decreasing efflux ratio (1.43 vs. 1.79). Pellodendrine significantly inhibited the activity of CYP1A2 and CYP2C9 with IC50 values of 22.99 and 16.23 µM, which are critical enzymes responsible for the metabolism of rhynchopylline. DISCUSSION AND CONCLUSIONS: The adverse interaction between rhynchopylline and pellodendrine draws attention to the co-administration of these two herbs and provides a reference for further investigations with a broader study population.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxindóis/administração & dosagem , Animais , Área Sob a Curva , Células CACO-2 , Interações Medicamentosas , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Oxindóis/farmacocinética , Oxindóis/farmacologia , Ratos , Ratos Sprague-Dawley
18.
Br J Cancer ; 122(5): 705-714, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31919406

RESUMO

BACKGROUND: Chemoresistance remains a critical event that accounts for colorectal cancer (CRC) lethality. The aim of this study is to explore the ability of dichloroacetate (DCA) to increase chemosensitivity in CRC and the molecular mechanisms involved. METHODS: The effects of combination treatment of DCA and oxaliplatin (L-OHP) were analysed both in vitro and in vivo. The DCA-responsive proteins in AMPK pathway were enriched using proteomic profiling technology. The effect of DCA on CAB39-AMPK signal pathway was analysed. In addition, miRNA expression profiles after DCA treatment were determined. The DCA-responsive miRNAs that target CAB39 were assayed. Alterations of CAB39 and miR-107 expression were performed both in vitro and on xenograft models to identify miR-107 that targets CAB39-AMPK-mTOR signalling pathway. RESULTS: DCA increased L-OHP chemosensitivity both in vivo and in vitro. DCA could upregulate CAB39 expression, which activates the AMPK/mTOR signalling pathway. CAB39 was confirmed to be a direct target of miR-107 regulated by DCA. Alterations of miR-107 expression were correlated with chemoresistance development in CRC both in vitro and in vivo. CONCLUSION: These findings suggest that the miR-107 induces chemoresistance through CAB39-AMPK-mTOR pathway in CRC cells, thus providing a promising target for overcoming chemoresistance in CRC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , MicroRNAs/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Neoplasias Colorretais/genética , Ácido Dicloroacético/administração & dosagem , Ácido Dicloroacético/farmacologia , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Células HCT116 , Células HEK293 , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , MicroRNAs/genética , Terapia de Alvo Molecular , Oxaliplatina/administração & dosagem , Oxaliplatina/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima
19.
Hepatology ; 70(5): 1770-1784, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31016736

RESUMO

Metabolic homeostasis of amino acids is essential for human health. Here, we aimed to investigate a potential role for the clock component reverse erythroblastosis virus α (Rev-erbα) in circadian regulation of amino acid metabolism. RNA-seq with Rev-erbα-/- mice showed expression changes in genes involved in amino acid metabolism, particularly, the urea cycle and methionine metabolism. Rev-erbα ablation increased hepatic mRNA, protein, and enzymatic activity of betaine homocysteine methyltransferase (Bhmt), cystathionine ß-synthase (Cbs), and cystathionine γ-lyase (Cth) and decreased the levels of plasma and liver homocysteine in mice. Cell-based assays confirmed negative regulation of these three genes by Rev-erbα. Combined luciferase reporter, mobility-shift, and chromatin immunoprecipitation assays identified Rev-erbα as a transcriptional repressor of Bhmt, Cbs, and Cth. Rev-erbα ablation or antagonism alleviated chemical-induced hyperhomocysteinemia in mice. This was accompanied by elevated expressions of Bhmt, Cbs, and Cth. Moreover, Rev-erbα ablation or antagonism promoted urea production and ammonia clearance. Of urea cycle-related genes, arginase 1 (Arg1), ornithine transcarbamylase (Otc), and carbamoyl-phosphate synthase 1 (Cps1) expressions were up-regulated in Rev-erbα-/- mice. Negative regulation of these urea cycle genes by Rev-erbα was validated using cell-based experiments. Mechanistic studies revealed that Rev-erbα inhibited CCAAT-enhancer-binding protein α transactivation to repress the transcription of Arg1, Cps1, and Otc. Conclusion: Rev-erbα antagonism alleviates hyperhomocysteinemia and promotes ammonia clearance. Targeting Rev-erbα represents an approach for the management of homocysteine- and ammonia-related diseases.


Assuntos
Amônia/metabolismo , Ritmo Circadiano/fisiologia , Homocisteína/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/antagonistas & inibidores , Animais , Masculino , Camundongos
20.
Xenobiotica ; 50(9): 1052-1063, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32118505

RESUMO

Cytochromes P450 (CYPs) catalyze a great number of metabolic reactions that have profound effects on the biological activities of xenobiotics and endobiotics. In this study, we aimed to characterize rhythmic expressions of drug-metabolizing CYPs using synchronized hepatoma cells, and to investigate the potential roles of cis-elements of circadian clock system (E-box, D-box and RevRE or RORE) in generating the rhythms.Serum was used to synchronize circadian cycles and to induce circadian gene expression in cultured hepatoma cells (HepRG and HepG2 cells). Regulation of CYP genes by circadian clock components was investigated by performing luciferase reporter, overexpression and knockdown experiments. mRNA and protein expression were determined by qPCR and Western blotting assays, respectively.Of ten major drug-metabolizing CYP genes, six are rhythmically expressed (CYP1A2, 2B6, 2C8, 2D6, 2E1 and 3A4), whereas other four are non-rhythmic (CYP1B1, 2A6, 2C9 and 2C19).The E-box binding protein BMAL1 directly controls the rhythmic expression of CYP1A2. Rhythmic expressions of CYP2E1 and CYP3A4 are generated via both E-box and D-box elements. The RevRE binding protein REV-ERBα contributes to rhythmic oscillations in CYP2B6 and CYP2C8.In conclusion, rhythmic expressions of five human CYPs (CYP1A2, 2B6, 2C8, 2E1 and 3A4) are generated and regulated by E-box-, D-box-, and/or RevRE-acting clock components. Our findings may have implications for understanding chronopharmacokinetic events in humans.


Assuntos
Relógios Circadianos/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Humanos , Microssomos Hepáticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA