Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 206, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38414027

RESUMO

BACKGROUND: The global cellular landscape of the tumor microenvironment (TME) combining primary and metastatic liver tumors has not been comprehensively characterized. METHODS: Based on the scRNA-seq and spatial transcriptomic data of non-tumor liver tissues (NTs), primary liver tumors (PTs) and metastatic liver tumors (MTs), we performed the tissue preference, trajectory reconstruction, transcription factor activity inference, cell-cell interaction and cellular deconvolution analyses to construct a comprehensive cellular landscape of liver tumors. RESULTS: Our analyses depicted the heterogeneous cellular ecosystems in NTs, PTs and MTs. The activated memory B cells and effector T cells were shown to gradually shift to inhibitory B cells, regulatory or exhausted T cells in liver tumors, especially in MTs. Among them, we characterized a unique group of TCF7+ CD8+ memory T cells specifically enriched in MTs that could differentiate into exhausted T cells likely driven by the p38 MAPK signaling. With regard to myeloid cells, the liver-resident macrophages and inflammatory monocyte/macrophages were markedly replaced by tumor-associated macrophages (TAMs), with TREM2+ and UBE2C+ TAMs enriched in PTs, while SPP1+ and WDR45B+ TAMs in MTs. We further showed that the newly identified WDR45B+ TAMs exhibit an M2-like polarization and are associated with adverse prognosis in patients with liver metastases. Additionally, we addressed that endothelial cells display higher immune tolerance and angiogenesis capacity, and provided evidence for the source of the mesenchymal transformation of fibroblasts in tumors. Finally, the malignant hepatocytes and fibroblasts were prioritized as the pivotal cell populations in shaping the microenvironments of PTs and MTs, respectively. Notably, validation analyses by using spatial or bulk transcriptomic data in clinical cohorts concordantly emphasized the clinical significance of these findings. CONCLUSIONS: This study defines the ontological and functional heterogeneities in cellular ecosystems of primary and metastatic liver tumors, providing a foundation for future investigation of the underlying cellular mechanisms.


Assuntos
Células Endoteliais , Neoplasias Hepáticas , Humanos , Ecossistema , Neoplasias Hepáticas/genética , Perfilação da Expressão Gênica , Microambiente Tumoral
2.
Nucleic Acids Res ; 50(D1): D950-D955, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34723317

RESUMO

The rapid development of single-molecule long-read sequencing (LRS) and single-cell assay for transposase accessible chromatin sequencing (scATAC-seq) technologies presents both challenges and opportunities for the annotation of noncoding variants. Here, we updated 3DSNP, a comprehensive database for human noncoding variant annotation, to expand its applications to structural variation (SV) and to implement variant annotation down to single-cell resolution. The updates of 3DSNP include (i) annotation of 108 317 SVs from a full spectrum of functions, especially their potential effects on three-dimensional chromatin structures, (ii) evaluation of the accessible chromatin peaks flanking the variants across 126 cell types/subtypes in 15 human fetal tissues and 54 cell types/subtypes in 25 human adult tissues by integrating scATAC-seq data and (iii) expansion of Hi-C data to 49 human cell types. In summary, this version is a significant and comprehensive improvement over the previous version. The 3DSNP v2.0 database is freely available at https://omic.tech/3dsnpv2/.


Assuntos
Cromatina/química , Bases de Dados Genéticas , Anotação de Sequência Molecular , RNA não Traduzido/genética , Software , Adulto , Linhagem da Célula/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Feto , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Polimorfismo de Nucleotídeo Único , RNA não Traduzido/classificação , RNA não Traduzido/metabolismo , Imagem Individual de Molécula/métodos , Análise de Célula Única/métodos
3.
Yi Chuan ; 46(1): 46-62, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38230456

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer accounting for 90% of cases. It is a highly invasive and deadly cancer with a gradual onset. Polypyrimidine tract-binding protein 1 (PTBP1) is an important RNA-binding protein involved in RNA metabolism and has been linked to oncogenic splicing events. While the oncogenic role of PTBP1 in HCC cells has been established, the exact mechanism of action remains unclear. This study aimed to investigate the functional connection between PTBP1 and dysregulated splicing events in HCC. Through immunoprecipitation-mass spectrometry analyses, we discovered that the proteins bound to PTBP1 were significantly enriched in the complex responsible for the alternative splicing of FGFR2 (fibroblast growth factor receptor 2). Further RNA immunoprecipitation and quantitative PCR assays confirmed that PTBP1 down-regulated the FGFR2-IIIb isoform levels and up-regulated the FGFR2-IIIc isoform levels in HCC cells, leading to a switch from FGFR2-IIIb to FGFR2-IIIc isoforms. Subsequent functional evaluations using CCK-8, transwell, and plate clone formation assays in HCC cell lines HepG2 and Huh7 demonstrated that FGFR2-IIIb exhibited tumor-suppressive effects, while FGFR2-IIIc displayed tumor-promoting effects. In conclusion, this study provides insights into the PTBP1-mediated alternative splicing mechanism in HCC progression, offering a new theoretical basis for the prevention and treatment of this malignancy. Mechanistically, the isoform switch from FGFR2-IIIb to FGFR2-IIIc promoted epithelial-mesenchymal transformation (EMT) of HCC cells and activated the FGFR cascades ERK and AKT pathways.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Isoformas de Proteínas/genética , Processamento Alternativo , RNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo
4.
Carcinogenesis ; 44(7): 610-625, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37235794

RESUMO

Although emerging evidence has established the roles of miRNAs in hepatocellular carcinoma (HCC), the global functional implication of miRNAs in this malignancy remains largely uncharacterized. Here, we aim to systematically identify novel miRNAs involved in HCC and clarify the function and mechanism of specific novel candidate miRNA(s) in this malignancy. Through an integrative omics approach, we identified ten HCC-associated functional modules and a collection of candidate miRNAs. Among them, we demonstrated that miR-424-3p, exhibiting strong associations with extracellular matrix (ECM), promotes HCC cells migration and invasion in vitro and facilitates HCC metastasis in vivo. We further demonstrated that SRF is a direct functional target of miR-424-3p, and is required for the oncogenic activity of miR-424-3p. Finally, we found that miR-424-3p reduces the interferon pathway by attenuating the transactivation of SRF on STAT1/2 and IRF9 genes, which in turn enhances the matrix metalloproteinases (MMPs)-mediated ECM remodeling. This study provides comprehensive functional relevance of miRNAs in HCC by an integrative omics analysis, and further clarifies that miR-424-3p in ECM functional module plays an oncogenic role via reducing the SRF-STAT1/2 axis in this malignancy.

5.
Mol Genet Genomics ; 298(5): 1007-1021, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37233799

RESUMO

High-altitude adaptation (HAA) was reported to be significantly associated with reduced risks for multiple cardiovascular diseases (CVDs). However, the causality and direction of the associations are largely uncharacterized. We aimed to examine the potential causal relationships between HAA and six types of CVD, including coronary artery disease (CAD), cerebral aneurysm, ischemic stroke, peripheral artery disease, arrhythmia and atrial fibrillation. We obtained the summary data from largest available genome-wide association study of HAA and six types of CVD. Two-sample bidirectional Mendelian randomization (MR) analyses were performed to infer the causality between them. In the sensitivity analyses, MR-Egger regression analyses and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) global analyses were used to assess the pleiotropic effects; Cochran's Q tests were used to test the heterogeneity by inverse variance-weighted (IVW) and MR-Egger methods; and the leave-one-out analyses were used to examine whether some single nucleotide polymorphisms (SNPs) could influence the results independently. The MR main analyses showed that the genetically instrumented HAA was significantly causally associated with the reduced risks of CAD (odds ratio [OR] = 0.029; 95% confidence interval [CI] = 0.004-0.234; P = 8.64 × 10-4). In contrast, there was no statistically significant relationship between CVDs and HAA. Our findings provide evidence for the causal effects of HAA on the reduced risks of CAD. However, there is no causality of CVDs on HAA. These findings might be helpful in developing the prevention and intervention strategies for CAD.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Altitude , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana
6.
Yi Chuan ; 45(11): 950-962, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764261

RESUMO

The CRISPR genome editing technology shows great application prospects in gene manipulation and infectious disease research, and is of great value for effective control and cure of infectious diseases. It has been utilized to generate specific disease models in cells, organoids and animals, which provide great convenience for research into the molecular mechanisms associated with infectious diseases. CRISPR screening technology enables high-throughput identification of risk factors. New molecular diagnostic tools based on CRISPR offer a more sensitive and faster method for detecting pathogens. The use of CRISPR tools to introduce resistance genes or to specifically destroy risk genes and virus genomes is intended to help prevent or treat infectious diseases. This review discusses the application of CRISPR genome editing technologies in the construction of disease models, screening of risk factors, pathogen diagnosis, and prevention and treatment of infectious diseases, thereby providing a reference for follow-up research in pathogenesis, diagnosis, prevention and treatment of infectious diseases.


Assuntos
Sistemas CRISPR-Cas , Doenças Transmissíveis , Edição de Genes , Edição de Genes/métodos , Humanos , Animais , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/terapia , Doenças Transmissíveis/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
7.
Yi Chuan ; 45(11): 963-975, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764262

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a broad clinical spectrum of coronavirus disease 2019 (COVID-19). Genetic factors might influence susceptibility to the SARS-CoV-2 infection or disease severity. Genome-wide association studies (GWASs) have identified multiple susceptible genes related to COVID-19 phenotypes, providing the scientific basis for the COVID-19 prevention and treatment. In this review, we summarize the recent progresses of COVID-19 susceptible genes, including the GWASs on multiple phenotypes of COVID-19, GWASs of COVID-19 in multiple ethnic populations, GWASs of COVID-19 based on multiple types of genetic variations, and the fine-mapping of the regions surrounding the susceptible genes.


Assuntos
COVID-19 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , SARS-CoV-2 , Humanos , COVID-19/genética , Predisposição Genética para Doença/genética , SARS-CoV-2/genética
8.
Semin Cancer Biol ; 75: 136-152, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32931952

RESUMO

Hepatocellular carcinoma(HCC) is one of the most common forms of cancer, and accounts for a high proportion of cancer-associated deaths. Growing evidences have demonstrated that non- protein-coding regions of the genome could give rise to transcripts, termed noncoding RNA (ncRNA), that form novel functional layers of the cellular activity. ncRNAs are implicated in different molecular mechanisms and functions at transcriptional, translational and post-translational levels. An increasing number of studies have demonstrated a complex array of molecular and cellular functions of ncRNAs in different stages of the HCC tumorigenesis, either in an oncogenic or tumor-suppressive manner. As a result, several pre-clinical studies have highlighted the great potentials of ncRNAs as novel biomarkers for cancer diagnosis or therapeutics in targeting HCC progression. In this review, we briefly described the characteristics of several representative ncRNAs and summarized the latest findings of their roles and mechanisms in the development of HCC, in order to better understand the cancer biology and their potential clinical applications in this malignancy.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , Animais , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
9.
Yi Chuan ; 44(2): 153-167, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35210216

RESUMO

Hepatocellular carcinoma (HCC) is a common cancer worldwide. Hypoxia is an important feature of solid tumors, including HCC, and is also an important factor involved in malignancy progression. However, the identification of hypoxia-related long non-coding RNA (lncRNAs) and their prognostic value in HCC have not been systematically investigated. The aim of this study is to identify the features based on the hypoxia-related lncRNAs and evaluate their predictive value for HCC prognosis. Based on the integrated analysis of HCC transcriptome data from The Cancer Genome Atlas (TCGA), we had identified 233 potential hypoxia-related lncRNAs. We further evaluated the prognostic value of these lncRNAs and optimally established a 12-lncRNA (AC012676.1, PRR7-AS1, AC020915.2, AC008622.2, AC026401.3, MAPKAPK5-AS1, MYG1-AS1, AC015908.3, AC009275.1, MIR210HG, CYTOR and SNHG3) prognostic risk model. The Cox proportional hazards regression analysis revealed that the hypoxia risk score is a novel independent prognostic predictor for HCC patients, which outperforms the traditional clinical pathological factors. Gene set enrichment analysis (GSEA) showed that the hypoxia risk score reflects the activation of biological features related to cell proliferation and the inactivation of lipid metabolism processes. In summary, we had constructed a risk score model based on 12 hypoxia-related lncRNAs, which might be a promising prognostic predictor for HCC patients and highlight their potential roles in the prevention and treatment of this malignancy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Humanos , Hipóxia/genética , Neoplasias Hepáticas/genética , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
10.
Yi Chuan ; 44(3): 230-244, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35307646

RESUMO

The abnormal expressions of minichromosome maintenance protein 2 (MCM2) are closely related to the development of various kinds of cancers. We aimed to explore the functions and potential molecular mechanisms of MCM2 gene in cholangiocarcinoma (CCA) cell lines (Huh28 and RBE). First, the cell counting kit-8 (CCK-8), plate clone formation, transwell and invasion assays showed that MCM2 promotes the proliferation, migration and invasion of CCA cells. Flow cytometry assays showed that MCM2 significantly promotes the cell cycle, and inhibits the apoptosis of CCA cells. Further, by analyzing the RNA sequencing data of cholangiocarcinoma, we found that MCM2 gene is significantly negatively correlated with p53 signaling pathway. Quantitative real time polymerase chain reaction (qRT-PCR) and Western blotting (WB) assays confirmed that MCM2 in CCA cells significantly down-regulated the mRNA and protein expression levels of p53 and BAX, and up-regulated the mRNA and protein expression levels of BCL2 and CCND1. Flow cytometry, qRT-PCR and WB assays confirmed that MCM2 promotes CCA through p53 pathway. Finally, we found that MCM2 is up-regulated in CCA tissues compared to the matched non-tumor cholangiocarcinoma tissues, and the high expressions of MCM2 are significantly associated with the poor clinical outcomes of CCA patients. In conclusion, this study revealed that MCM2 promotes the development of CCA by reducing the p53 pathway, and its high expression levels predict poor prognosis in CCA patients. These results provide a theoretical basis for the development of new clinical diagnosis and treatment of cholangiocarcinoma in the future.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
J Cell Mol Med ; 25(24): 11142-11156, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34738311

RESUMO

Somatic copy number alterations (CNAs) are a genomic hallmark of cancers. Among them, the chromosome 17p13.1 deletions are recurrent in hepatocellular carcinoma (HCC). Here, utilizing an integrative omics analysis, we screened out a novel tumour suppressor gene within 17p13.1, myosin heavy chain 10 (MYH10). We observed frequent deletions (~38%) and significant down-regulation of MYH10 in primary HCC tissues. Deletion or decreased expression of MYH10 was a potential indicator of poor outcomes in HCC patients. Knockdown of MYH10 significantly promotes HCC cell migration and invasion in vitro, and overexpression of MYH10 exhibits opposite effects. Further, inhibition of MYH10 markedly potentiates HCC metastasis in vivo. We preliminarily elucidated the mechanism by which loss of MYH10 promotes HCC metastasis by facilitating EGFR pathway activation. In conclusion, our study suggests that MYH10, a candidate target gene for 17p13 deletion, acts as a tumour suppressor and may serve as a potential prognostic indicator for HCC patients.


Assuntos
Carcinoma Hepatocelular/etiologia , Deleção Cromossômica , Cromossomos Humanos Par 17 , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/etiologia , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Transdução de Sinais , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional , Modelos Animais de Doenças , Suscetibilidade a Doenças , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Camundongos , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Cell Mol Med ; 25(1): 411-420, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242228

RESUMO

Noise-induced hearing loss (NIHL) seriously affects the life quality of humans and causes huge economic losses to society. To identify novel genetic loci involved in NIHL, we conducted a genome-wide association study (GWAS) for this symptom in Chinese populations. GWAS scan was performed in 89 NIHL subjects (cases) and 209 subjects with normal hearing who have been exposed to a similar noise environment (controls), followed by a replication study consisting of 53 cases and 360 controls. We identified that four candidate pathways were nominally significantly associated with NIHL, including the Erbb, Wnt, hedgehog and intraflagellar transport pathways. In addition, two novel index single-nucleotide polymorphisms, rs35075890 in the intron of AUTS2 gene at 7q11.22 (combined P = 1.3 × 10-6 ) and rs10081191 in the intron of PTPRN2 gene at 7q36.3 (combined P = 2.1 × 10-6 ), were significantly associated with NIHL. Furthermore, the expression quantitative trait loci analyses revealed that in brain tissues, the genotypes of rs35075890 are significantly associated with the expression levels of AUTS2, and the genotypes of rs10081191 are significantly associated with the expressions of PTPRN2 and WDR60. In conclusion, our findings highlight two novel loci at 7q11.22 and 7q36.3 conferring susceptibility to NIHL.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Perda Auditiva Provocada por Ruído/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , China , Proteínas do Citoesqueleto/genética , Predisposição Genética para Doença/genética , Humanos , Masculino , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/genética , Fatores de Transcrição/genética
13.
Hepatology ; 71(1): 112-129, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31148184

RESUMO

To identify hepatocellular carcinoma (HCC)-implicated long noncoding RNAs (lncRNAs), we performed an integrative omics analysis by integrating mRNA and lncRNA expression profiles in HCC tissues. We identified a collection of candidate HCC-implicated lncRNAs. Among them, we demonstrated that an lncRNA, which is named as p53-stabilizing and activating RNA (PSTAR), inhibits HCC cell proliferation and tumorigenicity through inducing p53-mediated cell cycle arrest. We further revealed that PSTAR can bind to heterogeneous nuclear ribonucleoprotein K (hnRNP K) and enhance its SUMOylation and thereby strengthen the interaction between hnRNP K and p53, which ultimately leads to the accumulation and transactivation of p53. PSTAR is down-regulated in HCC tissues, and the low PSTAR expression predicts poor prognosis in patients with HCC, especially those with wild-type p53. Conclusion: This study sheds light on the tumor suppressor role of lncRNA PSTAR, a modulator of the p53 pathway, in HCC.


Assuntos
Carcinoma Hepatocelular/etiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/fisiologia , Neoplasias Hepáticas/etiologia , RNA Longo não Codificante/fisiologia , Sumoilação/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Humanos , Células Tumorais Cultivadas
14.
Carcinogenesis ; 40(3): 474-486, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30371740

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Genomic copy number deletion at chromosome 14q31.1-32.13 was frequently observed in HCC; however, the relevant functional target(s) at that locus is not well determined. Here, we performed integrative genomic analyses and identified zinc finger CCCH-type containing 14 (ZC3H14) as a promising candidate at 14q31.1-32.13. We observed frequent copy number deletion (17.1%) and downregulation of ZC3H14 in primary HCC tissues. Downregulation of ZC3H14 was significantly associated with poor outcomes of patients with HCC. Overexpression of ZC3H14 in HCC cell lines significantly suppressed HCC cells growth in vitro and metastasis in vivo. In contrast, RNA interference silencing of ZC3H14 inhibited its tumor-suppressive function. Mechanismly, through combing bioinformatics analyses and experimental investigation, we demonstrated that loss of ZC3H14 promotes HCC progression through enhancing integrin pathway. This study suggests that ZC3H14 functions as a novel tumor suppressor and is a candidate prognostic biomarker for HCC patients.


Assuntos
Carcinoma Hepatocelular/patologia , Deleção Cromossômica , Cromossomos Humanos Par 14 , Regulação para Baixo , Integrinas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Ligação a Poli(A)/genética , Transdução de Sinais , Animais , Carcinoma Hepatocelular/metabolismo , Feminino , Genes Supressores de Tumor , Xenoenxertos , Humanos , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Nus
15.
J Cell Biochem ; 120(4): 6661-6670, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30368911

RESUMO

Nasopharyngeal carcinoma (NPC) is prevalent among populations from southern China and is influenced by both genetic and environmental risk factors. The monocyte chemoattractant protein-1 (MCP-1), a member of cysteine-cysteine chemokine family, plays critical roles in cancers. A polymorphism within the MCP-1 promoter, rs1024611, has been shown to be significantly associated with the risk of several cancers. Our purpose was to assess the role of rs1024611 in NPC susceptibility. By polymerase chain reaction-restriction fragment length polymorphism method, we genotyped rs1024611 in 593 patients with NPC (cases) and 480 cancer-free subjects (controls) among Guangxi population from southern China. We observed that the G allele of rs1024611 was significantly associated with the increased risk of NPC in an additive model and dominant model, respectively (P = 0.018 and 0.010, odds ratio = 1.25 and 1.41, respectively). No appreciable variation of the effects was found across the subgroups stratified by age, sex, nationality, smoking and drinking status, and smoking level. In addition, significantly higher messenger RNA (mRNA) expression level of MCP-1 was observed in NPC tissues than that in normal nasopharyngeal tissues, and the G allele of rs1024611 was significantly associated with elevated mRNA expression level of MCP-1 in Epstein-Barr virus-transformed lymphocytes. In conclusion, our findings suggested that rs1024611 at the MCP-1 promoter may be a risk factor for NPC. Further studies with larger sample size are necessary to confirm these findings.


Assuntos
Quimiocina CCL2/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/patologia , Prognóstico
16.
Gastroenterology ; 155(2): 542-556, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29702115

RESUMO

BACKGROUND & AIMS: Single nucleotide polymorphisms could affect risk for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We performed a germline copy number variation (CNV)-based genome-wide association study (GWAS) in populations of Chinese ancestry to search for germline CNVs that increase risk of HCC. METHODS: We conducted a CNV-based GWAS of 1583 HCC cases (persons with chronic HBV infection and HCC) and 1540 controls (persons with chronic HBV infection without HCC) in Chinese populations. Identified candidates were expressed in L-02, HepG2, or TP53-/- or wild-type HCT116 cells, and knocked down with short hairpin RNAs in HepG2, Bel-7402, and SMMC-7721 cells; proliferation, colony formation, and apoptosis were measured. Formation of xenograft tumors from cell lines was monitored in nude mice. Subcellular localization of ribosome proteins and levels or activity of p53 were investigated by co-immunoprecipitation, immunofluorescence, and immunoblot analyses. Levels of small nucleolar RNA H/ACA box 18-like 5 (SNORA18L5) were quantified by quantitative reverse transcription polymerase chain reaction. RESULTS: We identified a low-frequency duplication at chromosome 15q13.3 strongly associated with risk of HBV-related HCC (overall P = 3.17 × 10-8; odds ratio, 12.02). Copy numbers of the 15q13.3 duplication correlated with the expression of SNORA18L5 in liver tissues. Overexpression of SNORA18L5 increased HCC cell proliferation and growth of xenograft tumors in mice; knockdown reduced HCC proliferation and tumor growth. SNORA18L5 overexpression in HepG2 and SMMC-7721 cells inhibited p53-dependent cell cycle arrest and apoptosis. Overexpression of SNORA18L5 led to hyperactive ribosome biogenesis, increasing levels of mature 18S and 28S ribosomal RNAs and causing the ribosomal proteins RPL5 and RPL11 to stay in the nucleolus, which kept them from binding to MDM2. This resulted in increased MDM2-mediated ubiquitination and degradation of p53. Levels of SNORA18L5 were increased in HCC tissues compared with nontumor liver tissues and associated with shorter survival times of patients. CONCLUSIONS: In a CNV-based GWAS, we associated duplication at 15q13.3 with increased risk of HBV-related HCC. We found SNORA18L5 at this location to promote HCC cell proliferation and tumor growth in mice. SNORA18L5 increases ribosome biogenesis, facilitates ribosomal RNA maturation, and alters localization of RPL5 and RPL11, allowing for increased MDM2-mediated proteolysis of p53 and cell cycle arrest.


Assuntos
Carcinoma Hepatocelular/genética , Cromossomos Humanos Par 15/genética , Hepatite B Crônica/genética , Neoplasias Hepáticas/genética , RNA Nucleolar Pequeno/genética , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/genética , Adulto , Animais , Povo Asiático/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Variações do Número de Cópias de DNA/genética , Feminino , Duplicação Gênica , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Humanos , Fígado/patologia , Fígado/virologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Hum Mol Genet ; 25(16): 3626-3634, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27436580

RESUMO

To further identify novel susceptibility loci of nasopharyngeal carcinoma (NPC), we here extended our previous genome-wide association study (GWAS) by boosting statistical power with larger sample size and validating more SNPs in the ranking list based on the GWAS P-values. The discovery stage consisting of 463,250 SNPs in 1,583 cases and 2,979 controls of southern Chinese ancestry revealed 1,257 top SNPs to be associated with NPC, which were brought forward for validation in 1,925 cases and 1,947 controls of southern Chinese. Further, 11 SNPs were selected for another independent validation in 3,538 cases and 3,644 controls of southern Chinese. The joint analysis with 7,046 cases and 8,570 controls resulted in two associations surpassing genome-wide significance (P < 5 × 10-8), including TERT-CLPTM1L at chromosome 5p15 (rs401681; P = 2.65 × 10-14; odds ratio, OR = 0.82) and CIITA at chromosome 16p13 (rs6498114; P = 4.01 × 10-9; OR = 0.87). Conditional analysis revealed that rs401681 accounts for all the tested associations at TERT-CLPTM1L locus, which has been linked with multiple cancers' susceptibilities. Moreover, bioinformatics analyses showed that both SNPs are located in the regulatory regions and correlated with the expression of nearby genes (rs401681 for CLPTM1L and TERT, and rs6498114 for CIITA). CLPTM1L and TERT have been implicated in cancers, and CIITA is considered as the "master control factor" for the expression of NPC-associated MHC class II genes. These suggested that both SNPs might be functional. Altogether, our findings expand our understanding of the genetic contribution to NPC risk and provide novel biological insights into NPC pathogenesis.


Assuntos
Carcinoma/genética , Proteínas de Membrana/genética , Neoplasias Nasofaríngeas/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Telomerase/genética , Transativadores/genética , Povo Asiático , Carcinoma/patologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Masculino , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco
18.
Yi Chuan ; 40(1): 12-21, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29367189

RESUMO

The Tre-2/Bub2/Cdc16 (TBC) domain is a conserved protein motif consisting of approximately 200 amino acids, and is present in many eukaryotic proteins. TBC domain-containing proteins (TBC proteins) function as GTPase activating proteins (GAPs) for the small GTPase Rab, which can promote the hydrolysis of Rab-GTP to Rab-GDP in regulation of specific intracellular trafficking pathways. Several TBC proteins play important roles in cellular functions in mammals, and defects of which are closely associated with numerous disease processes. In this review, we summarize the structures and functions of the mammalian TBC proteins and recent advances in understanding their critical roles in the development of human diseases. This review serves as a reference for further investigations on the functions of TBC proteins in disease pathogeneses.


Assuntos
Subunidade Apc6 do Ciclossomo-Complexo Promotor de Anáfase/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Ubiquitina Tiolesterase/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/química , Humanos
19.
Genet Mol Biol ; 40(4): 743-750, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28981558

RESUMO

Heparanase activity is involved in cancer growth and development in humans and single nucleotide polymorphisms (SNPs) in the heparanase gene (HPSE) have been shown to be associated with tumors. In this study, we investigated whether SNPs in HPSE were a risk factor for hepatocellular carcinoma (HCC) by undertaking a comprehensive haplotype-tagging, case-control study. For this, six haplotype-tagging SNPs (htSNPs) in HPSE were genotyped in 400 HCC patients and 480 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. A log-additive model revealed significant correlations between the HPSE polymorphisms rs12331678 and rs12503843 and the risk of HCC in the overall samples (p = 0.0046 and p = 0.0055). When the analysis was stratified based on hepatitis B virus (HBV) carrier status, significant interactions between rs12331678 and rs12503843 and HBV were observed. Conditional logistic regression analysis for the independent effect of one significant SNP suggested that rs12331678 or rs12503843 contributed an independent effect to the significant association with the risk of HCC, respectively. Our findings suggest that the SNPs rs12331678 and rs12503843 are HCC risk factors, although the potential functional roles of these two SNPs remain to be fully elucidated.

20.
Hum Mol Genet ; 23(8): 2210-9, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24282030

RESUMO

Vaccination against hepatitis B virus is an effective and routine practice that can prevent infection. However, 5-10% of healthy adults fail to produce protective levels of antibody against the hepatitis B vaccination. It has been reported that host genetic variants might affect the immune response to hepatitis B vaccination. Here, we reported a genome-wide association study in a Chinese Han population consisting of 108 primary high-responders and 77 booster non-responders to hepatitis B vaccination using the Illumina HumanOmniExpress Beadchip. We identified 21 SNPs at 6p21.32 were significantly associated with non-response to booster hepatitis B vaccination (P-value <1 × 10(-6)). The most significant SNP in the region was rs477515, located ∼12 kb upstream of the HLA-DRB1 gene. Its P-value (4.81 × 10(-8)) exceeded the Bonferroni-corrected genome-wide significance threshold. Four tagging SNPs (rs477515, rs28366298, rs3763316 and rs13204672) that capture genetic information of these 21 SNPs were validated in three additional Chinese Han populations, consisting of 1336 primary high-responders and 420 primary non-responders. The four SNPs continued to show significant associations with non-response to hepatitis B vaccination (P-combined = 3.98 × 10(-13)- 1.42 × 10(-8)). Further analysis showed that the rs477515 was independently associated with non-response to hepatitis B vaccination with correction for other three SNPs in our GWAS and the known hepatitis B vaccine immunity associated SNP in previous GWAS. Our findings suggest that the rs477515 was an independent marker associated with non-response to hepatitis B vaccination and HLA-DR region might be a critical susceptibility locus of hepatitis B vaccine-induced immunity.


Assuntos
Povo Asiático/genética , Antígenos HLA-DR/genética , Vacinas contra Hepatite B/uso terapêutico , Hepatite B/genética , Hepatite B/terapia , Polimorfismo Genético/genética , Adulto , Estudos de Casos e Controles , China/epidemiologia , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Hepatite B/epidemiologia , Vírus da Hepatite B/fisiologia , Humanos , Masculino , Estadiamento de Neoplasias , Prognóstico , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA