Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118514, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487308

RESUMO

The rich pore structure and carbon structure of lignite make it a suitable adsorbent for effectively removing methylene blue (MB) from wastewater. This article reports the preparation of lignite-based adsorbents modified by magnesium salts, and the key factors and adsorption mechanism are analyzed to effectively improve the adsorption performance for MB. The results showed that the lignite was modified by magnesium salts, and the Mg2+ in the magnesium salts had a good binding effect on the oxygen-containing functional groups in the lignite. This improved the adsorption performance of the lignite-based adsorbents for MB. The Mg(NO3)2-modified lignite-based adsorbent showed the best adsorption performance and removal rate of MB (99.33%) when prepared with 8 wt % Mg(NO3)2. Characterization analysis showed that a "-COOMg" structure was formed between Mg2+ in the magnesium salts and the carboxylic acid functional group in the lignite, which was postulated to be the absorption site that promoted the adsorption performance for MB. It is speculated that the MB adsorption mechanism of this lignite-based adsorbent is ion exchange.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Azul de Metileno/química , Magnésio , Adsorção , Carvão Mineral , Sais , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
2.
Angew Chem Int Ed Engl ; 55(2): 737-41, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26602993

RESUMO

The effect of water on CO2 hydrogenation to produce higher alcohols (C2-C4) was studied. Pt/Co3O4, which had not been used previously for this reaction, was applied as the heterogeneous catalyst. It was found that water and the catalyst had an excellent synergistic effect for promoting the reaction. High selectivity of C2-C4 alcohols could be achieved at 140 °C (especially with DMI (1,3-dimethyl-2-imidazolidinone) as co-solvent), which is a much lower temperature than reported previously. The catalyst could be reused at least five times without reducing the activity and selectivity. D2O and (13)CH3OH labeling experiments indicated that water involved in the reaction and promoted the reaction kinetically, and ethanol was formed via CH3OH as an intermediate.

3.
Philos Trans A Math Phys Eng Sci ; 373(2057)2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26574526

RESUMO

Hydrogenation of CO(2) to alcohols is of great importance, especially when producing higher alcohols. In this work, we synthesized heterogeneous PtRu/Fe(2)O(3), in which the Pt and Ru bimetallic catalysts were supported on Fe(2)O(3). The catalyst was used to catalyse CO(2) hydrogenation to alcohols. It was demonstrated that the activity and selectivity could be tuned by the bimetallic composition, and the catalyst with a Pt to Ru molar ratio of 1:2 (Pt(1)Ru(2)/Fe(2)O(3)) had high activity and selectivity at 200°C, which is very low for heterogeneous hydrogenation of CO(2) to produce higher alcohols. The conversion and the selectivity increased with increasing pressures of CO(2) and/or H(2). The catalyst could be reused at least five times without any obvious change in activity or selectivity.

4.
Angew Chem Int Ed Engl ; 54(32): 9399-403, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26177726

RESUMO

The utilization of compounds from natural sources to prepare functional materials is of great importance. Herein, we describe for the first time the preparation of organic-inorganic hybrid catalysts by using natural phytic acid as building block. Zirconium phosphonate (Zr-PhyA) was synthesized by reaction of phytic acid and ZrCl4 and was obtained as a mesoporous material with pore sizes centered around 8.5 nm. Zr-PhyA was used to catalyze the mild and selective Meerwein-Ponndorf-Verley (MPV) reduction of various carbonyl compounds, e.g., of levulinic acid and its esters into γ-valerolactone. Further studies indicated that both Zr and phosphate groups contribute significantly to the excellent performance of Zr-PhyA.

5.
RSC Adv ; 13(7): 4351-4360, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36744290

RESUMO

Depolymerization of lignite into valuable chemicals via ruthenium ion catalytic oxidation (RICO) is a potential route for the non-energy utilization of lignite. However, the high cost of the Ru catalyst during depolymerization and the high content of inorganic salts in the product solution limit the development of this route. In this work, RICO depolymerization of lignite was conducted under an ultra-low dosage of RuCl3 catalyst to decrease the usage of the catalyst during the RICO process. Different approaches were attempted to fulfill the separation of benzene polycarboxylic acids (BPCAs) products with the inorganic salts derived from the oxidant NaIO4, including butanone extraction and desalting via crystallization under different temperatures. The results show that lignite can be efficiently depolymerized under the mass ratio of RuCl3/lignite as low as 1/1000 by prolonging the reaction time without decreasing the depolymerization degree and BPCAs yields compared to the commonly used mass ratio of 1/10. Butanone can extract ca. 91% of the total BPCAs in the product solution, and the inorganic salts content (mainly NaIO3) in the extraction solution was as low as 0.19 mg mL-1. A new strategy of first acidification of depolymerization aqueous solution by HCl and then extraction by butanone is proved to be efficient for the separation of BPCAs with inorganic salts. Salting out via crystallization under lower temperature can remove ca. half content of the salts, and the efficiency is inferior to butanone extraction. The low usage of RuCl3 can efficiently decrease the catalyst cost of the RICO process, and butanone extraction can fulfill the enrichment of BPCAs and the separation of BPCAs with inorganic salts. This work is meaningful for the potential application of RCIO depolymerization of lignite for the production of valuable chemicals.

6.
RSC Adv ; 13(34): 23669-23681, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37555101

RESUMO

To ensure the safe transportation and efficient utilisation of lignite, it is important to inhibit its spontaneous combustion. In this study, Shengli lignite (SL+) was used as the research object and ionic liquids (ILs) were used to pretreat the lignite to investigate their effect on the combustion performance of lignite. On this basis, the relationship between the structure and combustion performance of lignite with different structures (heat treatment, oxidation) after ILs treatment was investigated. Results indicated that the combustion of lignite treated with ILs shifted towards higher temperatures. The most pronounced effect was observed in coal samples treated with [BMIM]Cl (1-butyl-3-methylimidazolium chloride), with the maximum combustion rate corresponding to a temperature increase of approximately 57 °C compared to that of the untreated lignite. For the heat-treated lignite, the temperature corresponding to the maximum combustion rate was approximately 38 °C higher than that of the untreated lignite. After [BMIM]Cl treatment, the combustion performance of the heat-treated lignite changed very slightly. In contrast, for oxidised lignite, the temperature corresponding to the maximum combustion rate decreased by approximately 54 °C compared with that of the untreated lignite and increased by approximately 135 °C after treatment with [BMIM]Cl. The characterisation results show that the content of aliphatic hydrogen and oxygen-containing functional groups decreased in the heat-treated lignite, while the content of hydroxyl and carboxyl groups increased in the oxidised lignite. The microstructure of the heat-treated lignite after [BMIM]Cl treatment changed slightly. In contrast, in the oxidised lignite after [BMIM]Cl treatment, the content of hydroxyl and carboxyl groups decreased, whereas the content of ether (C-O-) structures increased. The increased content of ether (C-O-) structures improved the stability of the coal samples. It is believed that the inhibition of lignite combustion is mainly attributed to the high stability of the ether (C-O-) structures. The kinetic analysis demonstrated that the ILs treatment increased the activation energy of lignite combustion.

7.
Front Chem ; 10: 964128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898969

RESUMO

The catalytic conversion of ethyl levulinate (EL) to γ-valerolactone (GVL) is an important intermediate reaction in the conversion and utilization of biomass resources. The development of novel and efficient catalysts is significantly important for this reaction. In this work, using the biomass-derived tannic acid as carbon precursor and the transition metal cobalt as active component, a novel tannic acid carbon supported cobalt catalyst (Co/TAC) was prepared by pyrolysis and subsequent hydrazine hydrate reduction method. The hydrogenation of EL and other carbonyl compounds by hydrogen transfer reaction was used to evaluate the performance of the catalysts. The effects of different preparation and reaction conditions on the performance of the catalysts were investigated, and the structures of the prepared catalysts were characterized in detail. The results showed that the carbonization temperature of the support had a significant effect on the activity of the catalyst for the reaction. Under the optimized conditions, the Co/TAC-900 catalyst obtained the highest GVL yield of 91.3% under relatively mild reaction conditions. Furthermore, the prepared catalyst also showed high efficiency for the hydrogenation of various ketone compounds with different structures. This work provides a new reference for the construction of the catalysts during the conversion of biomass and a potential pathway for the high-value utilization of tannin resource.

8.
Front Chem ; 10: 966270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936079

RESUMO

Functional use of biomass based on its structural properties is an efficient approach for the valuable utilization of biomass resources. In this work, carboxymethyl cellulose zirconium-based catalyst (Zr-CMC) was constructed by the coordination between the carboxylic groups in sodium carboxymethyl cellulose (CMC-Na) with transition metal Zr4+. The prepared catalyst was applied into the synthesis of furfuryl alcohol (FAL) by catalytic transfer hydrogenation of biomass-derived furfural (FF) using isopropanol as hydrogen donor. Both the preparation conditions and the reaction conditions of Zr-CMC catalyst were investigated and optimized. The results showed that Zr-CMC was efficient for the reaction with the FF conversion, FAL yield and selectivity reaching to 92.5%, 91.5 %, and 99.0%, respectively, under the mild conditions (90°C). Meanwhile, the Zr-CMC catalyst could be reused at least for five times without obvious decrease in efficiency, indicating the catalyst had excellent stability. With the advantages of sustainable raw materials, high efficiency, and excellent stability, the prepared catalyst is potential for application in the field of biomass conversion.

9.
RSC Adv ; 11(23): 13970-13979, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423929

RESUMO

The oxytetracycline fermentation broth residue (OFR) is an abundant solid waste in the fermentation industry, which is hazardous but tricky to treat. The resource utilization of the waste OFR is still challenging. In this study, a novel route of using OFR was proposed that OFR was used as the organic ligands to construct a new hafnium based catalyst (Hf-OFR) for Meerwein-Ponndorf-Verley (MPV) reactions of biomass-derived platforms. The acidic groups in OFR were used to coordinate with Hf4+, and the carbon skeleton structures in OFR were used to form the spatial network structures of the Hf-OFR catalyst. The results showed that the synthesized Hf-OFR catalyst could catalyze the MPV reduction of various carbonyl compounds under relatively mild reaction conditions, with high conversions and yields. Besides, the Hf-OFR catalyst could be recycled at least 5 times with excellent stability in activity and structures. The prepared Hf-OFR catalyst possesses the advantages of high efficiency, a simple preparation process, and low cost in ligands. The proposed strategy of constructing catalysts using OFR may provide new routes for both valuable utilization of the OFR solid waste in the fermentation industry and the construction of efficient catalysts for biomass conversion.

10.
ACS Omega ; 6(40): 26613-26622, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34661015

RESUMO

A clean and efficient conversion process is essential for the utilization of low-rank coals. Lignite, a typical representative of the low-rank coal family, has huge potential for the production of valuable chemicals via the oxidative depolymerization reaction. Ruthenium ion-catalyzed oxidation (RICO) is an effective route for lignite depolymerization under mild conditions, but the high cost of precious Ru limits the potential large-scale application of RICO. How to recycle and reuse Ru is critical to promote the application of RICO. In this work, a novel and efficient approach for reusing Ru through recycling the solvent mixture containing Ru was established for RICO. First, the influence of different reaction parameters on the depolymerization degree of lignite and benzene polycarboxylic acid (BPCA) yields was investigated. Second, the distribution of Ru in the organic phase (OP), aqueous phase (AP), and residual solid phase (RSP) was analyzed after the RICO reaction. Finally, based on the distribution of Ru in different phases, a novel route of recycling Ru by reusing the Ru-containing solvents was proposed. The results showed that the dosage of RuCl3 and NaIO4 had a significant influence on both the depolymerization degree of lignite and BPCA yields. The distribution of Ru had a close relationship with the depolymerization degree of lignite and the dosage of NaIO4. After the depolymerization reaction, the CCl4 phase containing Ru was reused directly as the solvent for the next run, which could fulfill the reuse of both CCl4 and Ru. The results proved that the Ru-containing CCl4 phase could maintain catalytic performance for 5 runs. This work provides an efficient route to reuse Ru for the RICO depolymerization of lignite into valuable organic acids. As far as we know, this is the first report concerning the recycling and reuse of Ru during the RICO of lignite. This work is important for the application of RICO in lignite depolymerization.

11.
ACS Omega ; 6(38): 24848-24858, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604666

RESUMO

Different water-soluble sodium compounds (NaCl, Na2CO3, and NaOH) were used to treat Shengli lignite, and the resulting effects on the microstructure and combustion performance of the coal were investigated. The results showed that Na2CO3 and NaOH had a significant impact on combustion performance of lignite, while NaCl did not. The Na2CO3-treated lignite showed two distinct weight-loss temperature regions, and after NaOH treatment, the main combustion peak of the sample moved to the high temperature. This indicates that both Na2CO3 and NaOH can inhibit the combustion of lignite, with the latter showing a greater effect. The FT-IR/XPS results revealed that Na+ interacted with the oxygen-containing functional groups in lignite to form a "-COONa" structure during the Na2CO3 and NaOH treatments. It is deduced that the inhibitory effect on combustion of lignite may be attributed to the stability of the "-COONa" structure, and the relative amount is directly correlated with the inhibitory effect. The XRD/Raman analysis indicated that the stability of the aromatic structure containing "-COOH" increased with the number of "-COONa" structures formed. Additionally, experiments with carboxyl-containing compounds further demonstrated that the number of oxygen-containing functional groups combined with Na was the main reason for the differences in the combustion performance of treated lignite.

12.
Chemosphere ; 264(Pt 1): 128500, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33035954

RESUMO

Carbide slag may pollute the environment because it is difficult to handle. In this paper, carbide slag without pretreatment served as the new source of calcium and was added to bituminous coal for gasification experiments to realize waste utilization. The gasification experiment after adding carbide slag to bituminous coal enhances H2 production, which reduced the activation energy of the gasification reaction. The results show that the catalytic effect on steam gasification was evident when the carbide slag was added to Mongolian bituminous coal. The coal char at reaction temperature was prepared and characterized by X-ray diffraction (XRD), Raman, Scanning electron microscope (SEM), Transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and FT-IR spectroscopy. The carbon structure evolution and calcium structure changes of coal char under reaction temperature were studied, and the influence of coal char structure changes on gasification performance was analyzed. The results show that in the coal char added with carbide slag, the oxygen-containing functional groups generated by the polycondensation reaction interacted with calcium to form a calcium-oxygen-carbon complex. The existence of this structure not only leads to the highly uniform dispersion of CaO in the char but also hinders the graphitization process of the char. Highly dispersed CaO and disordered carbon structure significantly improved the reactivity of bituminous coal steam gasification. Si and Al in the bituminous coal affected the dispersion of Ca during steam gasification.


Assuntos
Carvão Mineral , Vapor , Biomassa , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
13.
RSC Adv ; 10(12): 6944-6952, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35493886

RESUMO

The conversion of carbonyl compounds into alcohols or their derivatives via the catalytic transfer hydrogenation (CTH) process known as Meerwein-Ponndorf-Verley reduction is an important reaction in the reaction chain involved in biomass transformation. The rational design of efficient catalysts using natural and renewable materials is critical for decreasing the catalyst cost and for the sustainable supply of raw materials during catalyst preparation. In this study, a novel hafnium-based catalyst was constructed using naturally existing tannic acid as the ligand. The prepared hafnium-tannic acid (Hf-TA) catalyst was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetry (TG). Hf-TA was applied in the conversion of furfuraldehyde (FD) to furfuryl alcohol (FA) using isopropanol (2-PrOH) as both the reaction solvent and the hydrogen source. Both preparation conditions and the effects of the reaction parameters on the performance of the catalyst were studied. Under the relatively mild reaction conditions of 70 °C and 3 h, FD (1 mmol) could be converted into FA with a high yield of 99.0%. In addition, the Hf-TA catalyst could be reused at least ten times without a notable decrease in activity and selectivity, indicating its excellent stability. It was proved that Hf-TA could also catalyze the conversion of various carbonyl compounds with different structures. The high efficiency, natural occurrence of tannic acid, and facile preparation process make Hf-TA a potential catalyst for applications in the biomass conversion field.

14.
RSC Adv ; 10(6): 3479-3486, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35497742

RESUMO

Due to the low utilization efficiency of lignite as a primary energy source, the valuable and clean use of lignite becomes important. Oxidative depolymerization of lignite into valuable organic acids (VOAs) has been identified to be feasible, but the difficulty in separating VOAs from the complex lignite depolymerized mixture (LDM) limits the potential application of this route. In this study, based on the coordination interactions between metal ions and carboxylate groups in VOAs, the metal ion-induced separation of VOAs from the LDM was proposed. The results proved that most of the studied metal ions (M n+) could selectively form M-VOA precipitates with the VOAs in LDM and transferred the VOAs from the water phase into the solid precipitates. Then, the intermediate M-VOAs could be dissolved in diluted NaOH solution to release the VOAs, with M n+ being transformed into M(OH) n . The separation yield and selectivity could be tuned facilely by various metal ions at different dosages, pH, and temperatures. The process could be fulfilled under near-room temperature in water without the use of organic solvents. Due to its efficiency, tunable selectivity, and green nature, the proposed separation strategy may find potential applications in the valuable and clean use of lignite sources.

15.
RSC Adv ; 10(17): 9985-9995, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498581

RESUMO

Construction and application of novel hydrogenation catalysts is important for the conversion of carbonyl or aldehyde compounds into alcohols in the field of biomass utilization. In this work, a novel, efficient, and easily prepared hafnium-graphite oxide (Hf-GO) catalyst was constructed via the coordination between Hf4+ and the carboxylic groups in GO. The catalyst was applied into the hydrogenation of biomass derived carbonyl compounds via the Meerwein-Ponndorf-Verley (MPV) reaction. The catalyst gave high efficiency under mild conditions. An interesting phenomenon was found whereby the activity of the catalyst increased gradually in the initial stage during reaction. The solvent, isopropanol, was proved to have an activation effect on the catalyst, and the activation effect varied with different alcohols and temperatures. Further characterizations showed that isopropanol played the activation effect via replacing the residual solvent (DMF) in micro- and mesopores during the preparation process, which was hard to be completely removed by common drying process.

16.
Chem Sci ; 7(1): 463-468, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29861995

RESUMO

Direct utilization of the abundant hydrogen and oxygen in water for organic reactions is very attractive and challenging in chemistry. Herein, we report the first work on the utilization of the hydrogen in water for the hydrogenation of various organic compounds to form valuable chemicals and the oxygen for the oxidation of glucose, simultaneously by photocatalysis. It was discovered that various unsaturated compounds could be efficiently hydrogenated with high conversion and selectivity by the hydrogen from water splitting and glucose reforming over Pd/TiO2 under UV irradiation (350 nm). At the same time, glucose was oxidated by the hydroxyl radicals from water splitting and the holes caused by UV irradiation to form biomass-derived chemicals, such as arabinose, erythrose, formic acid, and hydroxyacetic acid. Thus, the hydrogen and oxygen were used ideally. This work presents a new and sustainable strategy for hydrogenation and biomass conversion by using the hydrogen and oxygen in water.

17.
Chem Commun (Camb) ; 51(19): 4028-31, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25661479

RESUMO

Ionic liquid 1-benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BnMIm][NTf2]) can promote the generation of the ˙OOH free radical and thereby efficiently transformed the ß-O-4 lignin model compound 2-phenoxyacetophenone into benzoic acid and phenol using O2 as the oxidant. Furthermore, the IL-based metal-free catalytic system can also depolymerize other lignin model compounds and organosolv lignin effectively.


Assuntos
Líquidos Iônicos/química , Lignina/química , Polimerização , Ácido Benzoico/química , Catálise , Radicais Livres/química , Oxirredução , Fenol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA