Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bioconjug Chem ; 28(7): 1906-1915, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28590752

RESUMO

Phosphopantetheine transferases (PPTases) can be used to efficiently prepare site-specific antibody-drug conjugates (ADCs) by enzymatically coupling coenzyme A (CoA)-linker payloads to 11-12 amino acid peptide substrates inserted into antibodies. Here, a two-step strategy is established wherein in a first step, CoA analogs with various bioorthogonal reactivities are enzymatically installed on the antibody for chemical conjugation with a cytotoxic payload in a second step. Because of the high structural similarity of these CoA analogs to the natural PPTase substrate CoA-SH, the first step proceeds very efficiently and enables the use of peptide tags as short as 6 amino acids compared to the 11-12 amino acids required for efficient one-step coupling of the payload molecule. Furthermore, two-step conjugation provides access to diverse linker chemistries and spacers of varying lengths. The potency of the ADCs was largely independent of linker architecture. In mice, proteolytic cleavage was observed for some C-terminally linked auristatin payloads. The in vivo stability of these ADCs was significantly improved by reduction of the linker length. In addition, linker stability was found to be modulated by attachment site, and this, together with linker length, provides an opportunity for maximizing ADC stability without sacrificing potency.


Assuntos
Anticorpos Monoclonais/química , Coenzima A/química , Citotoxinas/química , Imunoconjugados/química , Aminobenzoatos/administração & dosagem , Aminobenzoatos/química , Animais , Citotoxinas/administração & dosagem , Estabilidade de Medicamentos , Camundongos , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Relação Estrutura-Atividade
2.
Bioconjug Chem ; 26(12): 2554-62, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26588668

RESUMO

Post-translational modification catalyzed by phosphopantetheinyl transferases (PPTases) has previously been used to site-specifically label proteins with structurally diverse molecules. PPTase catalysis results in covalent modification of a serine residue in acyl/peptidyl carrier proteins and their surrogate substrates which are typically fused to the N- or C-terminus. To test the utility of PPTases for preparing antibody-drug conjugates (ADCs), we inserted 11 and 12-mer PPTase substrate sequences at 110 constant region loop positions of trastuzumab. Using Sfp-PPTase, 63 sites could be efficiently labeled with an auristatin toxin, resulting in 95 homogeneous ADCs. ADCs labeled in the CH1 domain displayed in general excellent pharmacokinetic profiles and negligible drug loss. A subset of CH2 domain conjugates underwent rapid clearance in mouse pharmacokinetic studies. Rapid clearance correlated with lower thermal stability of the particular antibodies. Independent of conjugation site, almost all ADCs exhibited subnanomolar in vitro cytotoxicity against HER2-positive cell lines. One selected ADC was shown to induce tumor regression in a xenograft model at a single dose of 3 mg/kg, demonstrating that PPTase-mediated conjugation is suitable for the production of highly efficacious and homogeneous ADCs.


Assuntos
Aminobenzoatos/metabolismo , Antineoplásicos/metabolismo , Proteínas de Bactérias/metabolismo , Imunoconjugados/metabolismo , Neoplasias/tratamento farmacológico , Oligopeptídeos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Trastuzumab/metabolismo , Aminobenzoatos/química , Aminobenzoatos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Humanos , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Peptídeos/química , Peptídeos/metabolismo , Especificidade por Substrato , Trastuzumab/química , Trastuzumab/uso terapêutico
3.
J Colloid Interface Sci ; 566: 473-484, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32035352

RESUMO

A facile and green method for preparation of gold/palladium (Au/Pd) bimetallic nanoparticles interleaved reduced graphene oxide (rGO) composite was presented. One-step electroreduction of Au/Pd precursors and graphene oxide synergistically produced a multilayered and well-structured nanohybrid on glassy carbon electrode, which was explored as a highly efficient electrocatalyst. This operation is easy and controllable, as compared with time-consuming and procedure-tedious hydrothermal synthesis. The morphology and chemical constituents were meticulously characterized. The remarkable electrocatalytic performance of the prepared nanohybrid was demonstrated by detection of a high-risk carcinogen pollutant, hydrazine. By optimizing the preparation condition and investigating the electrochemical behavior, we achieved the sensitive analysis of hydrazine with ultralow oxidation overpotential. Amperometry was employed for constructing the quantitative calibration curve; the steady-state current originating from hydrazine oxidation was proportional to the analytical concentration ranging from 0.1 µM to 200 µM, with the detection limit of 16 nM. Moreover, the nanohybrid displayed considerable anti-interfering ability with respect to hydrazine detection, as a variety of potentially coexisting substances produced negligible electrochemical response in the given analytical condition. Advantages including easy-to-preparation, high sensitivity and favorable selectivity, as well as broad linear response make the present method feasible for monitoring of hydrazine in water environment.

4.
J Leukoc Biol ; 81(3): 825-34, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17148690

RESUMO

Although IFN-alpha forms the foundation of therapy for chronic hepatitis C, only a minority of patients has a sustained response to IFN-alpha alone. The antiviral activities of IFN-alpha formed the rationale for its use in viral hepatitis. However, IFN-alpha and the other Type I IFNs are also pleiotropic immune regulators. Type I IFNs can promote IFN-gamma production by activating STAT4 but can also inhibit production of IL-12, a potent activator of STAT4 and IFN-gamma production. The efficacy of IFN-alpha in the treatment of hepatitis C may therefore depend in part on the balance of IFN-gamma-inducing and IL-12-suppressing effects. We characterized the effects of pegylated IFN-alpha therapy for hepatitis C on the capacity of patients' PBMC to produce IL-12 and IFN-gamma ex vivo. Cells from patients with a sustained virological response to therapy had significantly greater levels of IFN-alpha-driven IFN-gamma production prior to treatment than those from nonresponding patients. No differences in pretreatment IL-12 productive capacity were seen between patient groups. However, therapy with IFN-alpha led to suppression of inducible IL-12 production throughout the course of therapy in both groups of patients.


Assuntos
Hepatite C Crônica/tratamento farmacológico , Interferon-alfa/administração & dosagem , Interferon gama/fisiologia , Interleucina-12/fisiologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Criança , Pré-Escolar , Feminino , Hepatite C Crônica/imunologia , Humanos , Injeções Subcutâneas , Interferon-alfa/uso terapêutico , Interferon beta/administração & dosagem , Interferon beta/uso terapêutico , Interferon gama/biossíntese , Interleucina-12/biossíntese , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Masculino , Projetos Piloto , Relação Estrutura-Atividade
5.
Biochemistry ; 45(14): 4444-54, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16584180

RESUMO

Human acidic mammalian chitinase (AMCase), a member of the family 18 glycosyl hydrolases, is one of the important proteins involved in Th2-mediated inflammation and has been implicated in asthma and allergic diseases. Inhibition of AMCase results in decreased airway inflammation and airway hyper-responsiveness in a mouse asthma model, suggesting that the AMCase activity is a part of the mechanism of Th2 cytokine-driven inflammatory response in asthma. In this paper, we report the first detailed kinetic characterization of recombinant human AMCase. In contrast with mouse AMCase that has been reported to have a major pH optimum at 2 and a secondary pH optimum around 3-6, human AMCase has only one pH optimum for k(cat)/K(m) between pH 4 and 5. Steady state kinetics shows that human AMCase has "low" intrinsic transglycosidase activity, which leads to the observation of apparent substrate inhibition. This slow transglycosylation may provide a mechanism in vivo for feedback regulation of the chitinase activity of human AMCase. HPLC characterization of cleavage of chitooligosaccharides (4-6-mers) suggests that human AMCase prefers the beta anomer of chitooligosaccharides as substrate. Human AMCase also appears to cleave chitooligosaccharides from the nonreducing end primarily by disaccharide units. Ionic strength modulates the enzymatic activity and substrate cleavage pattern of human AMCase against fluorogenic substrates, chitobiose-4-methylumbelliferyl and chitotriose-4-methylumbelliferyl, and enhances activity against chitooligosaccharides. The physiological implications of these results are discussed.


Assuntos
Quitinases/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA