Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunity ; 56(12): 2773-2789.e8, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37992711

RESUMO

Although the gut microbiota can influence central nervous system (CNS) autoimmune diseases, the contribution of the intestinal epithelium to CNS autoimmunity is less clear. Here, we showed that intestinal epithelial dopamine D2 receptors (IEC DRD2) promoted sex-specific disease progression in an animal model of multiple sclerosis. Female mice lacking Drd2 selectively in intestinal epithelial cells showed a blunted inflammatory response in the CNS and reduced disease progression. In contrast, overexpression or activation of IEC DRD2 by phenylethylamine administration exacerbated disease severity. This was accompanied by altered lysozyme expression and gut microbiota composition, including reduced abundance of Lactobacillus species. Furthermore, treatment with N2-acetyl-L-lysine, a metabolite derived from Lactobacillus, suppressed microglial activation and neurodegeneration. Taken together, our study indicates that IEC DRD2 hyperactivity impacts gut microbial abundances and increases susceptibility to CNS autoimmune diseases in a female-biased manner, opening up future avenues for sex-specific interventions of CNS autoimmune diseases.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Esclerose Múltipla , Masculino , Feminino , Camundongos , Animais , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças , Transdução de Sinais , Progressão da Doença , Receptores Dopaminérgicos
2.
Proc Natl Acad Sci U S A ; 120(8): e2210643120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36795751

RESUMO

Microglia play a critical role in the pathogenic process of neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). Upon pathological stimulation, microglia are converted from a surveillant to an overactivated phenotype. However, the molecular characters of proliferating microglia and their contributions to the pathogenesis of neurodegeneration remain unclear. Here, we identify chondroitin sulfate proteoglycan 4 (Cspg4, also known as neural/glial antigen 2)-expressing microglia as a specific subset of microglia with proliferative capability during neurodegeneration. We found that the percentage of Cspg4+ microglia was increased in mouse models of PD. The transcriptomic analysis of Cspg4+ microglia revealed that the subcluster Cspg4high microglia displayed a unique transcriptomic signature, which was characterized by the enrichment of orthologous cell cycle genes and a lower expression of genes responsible for neuroinflammation and phagocytosis. Their gene signatures were also distinct from that of known disease-associated microglia. The proliferation of quiescent Cspg4high microglia was evoked by pathological α-synuclein. Following the transplantation in the adult brain with the depletion of endogenous microglia, Cspg4high microglia grafts showed higher survival rates than their Cspg4- counterparts. Consistently, Cspg4high microglia were detected in the brain of AD patients and displayed the expansion in animal models of AD. These findings suggest that Cspg4high microglia are one of the origins of microgliosis during neurodegeneration and may open up a avenue for the treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Camundongos , Animais , Microglia/metabolismo , Doença de Parkinson/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Fagocitose
3.
Echocardiography ; 41(7): e15876, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980981

RESUMO

OBJECTIVES: To assess the ability of left atrial (LA) strain parameters to discriminate patients with elevated left atrial pressure (LAP) from patients with atrial fibrillation (AF). METHODS AND RESULTS: A total of 142 patients with non-valvular AF who underwent first catheter ablation (CA) between November 2022 and November 2023 were enrolled in the study. Conventional and speckle-tracking echocardiography (STE) were performed in all patients within 24 h before CA, and LAP was invasively measured during the ablation procedure. According to mean LAP, the study population was classified into two groups of normal LAP (LAP < 15 mmHg, n = 101) and elevated LAP (LAP ≥ 15 mmHg, n = 41). Compared with the normal LAP group, elevated LAP group showed significantly reduced LA reservoir strain (LASr) [9.14 (7.97-11.80) vs. 20 (13.59-26.96), p < .001], and increased LA filling index [9.60 (7.15-12.20) vs. 3.72 (2.17-5.82), p < .001], LA stiffness index [1.13 (.82-1.46) vs. .47 (.30-.70), p < .001]. LASr, LA filling index and LA stiffness index were independent predictors of elevated LAP after adjusted by the type of AF, EDT, E/e', mitral E, and peak acceleration rate of mitral E velocity. The receiver-operating characteristic curve (ROC) analysis showed LA strain parameters (area under curve [AUC] .794-.819) could provide similar or greater diagnostic accuracy for elevated LAP, as compared to conventional echocardiographic parameters. Furthermore, the novel algorithms built by LASr, LA stiffness index, LA filling index, and left atrial emptying fraction (LAEF), was used to discriminate elevated LAP in AF with good accuracy (AUC .880, accuracy of 81.69%, sensitivity of 80.49%, and specificity of 82.18%), and much better than 2016 ASE/EACVI algorithms in AF. CONCLUSION: In patients with AF, LA strain parameters could be useful to predict elevated LAP and non-inferior to conventional echocardiographic parameters. Besides, the novel algorithm built by LA strain parameters combined with conventional parameters would improve the diagnostic efficiency.


Assuntos
Fibrilação Atrial , Função do Átrio Esquerdo , Pressão Atrial , Ecocardiografia , Átrios do Coração , Humanos , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/cirurgia , Feminino , Masculino , Pessoa de Meia-Idade , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/fisiopatologia , Ecocardiografia/métodos , Pressão Atrial/fisiologia , Função do Átrio Esquerdo/fisiologia , Valor Preditivo dos Testes , Ablação por Cateter/métodos , Reprodutibilidade dos Testes , Idoso
4.
J Neuroinflammation ; 20(1): 203, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674228

RESUMO

Astrocytes contribute to chronic neuroinflammation in a variety of neurodegenerative diseases, including Parkinson's disease (PD), the most common movement disorder. However, the precise role of astrocytes in neuroinflammation remains incompletely understood. Herein, we show that regulator of G-protein signaling 5 (RGS5) promotes neurodegenerative process through augmenting astrocytic tumor necrosis factor receptor (TNFR) signaling. We found that selective ablation of Rgs5 in astrocytes caused an inhibition in the production of cytokines resulting in mitigated neuroinflammatory response and neuronal survival in animal models of PD, whereas overexpression of Rgs5 had the opposite effects. Mechanistically, RGS5 switched astrocytes from neuroprotective to pro-inflammatory property via binding to the receptor TNFR2. RGS5 also augmented TNFR signaling-mediated pro-inflammatory response by interacting with the receptor TNFR1. Moreover, interrupting RGS5/TNFR interaction by either RGS5 aa 1-108 or small molecular compounds feshurin and butein, suppressed astrocytic cytokine production. We showed that the transcription of astrocytic RGS5 was controlled by transcription factor early B cell factor 1 whose expression was reciprocally influenced by RGS5-modulated TNF signaling. Thus, our study indicates that beyond its traditional role in G-protein coupled receptor signaling, astrocytic RGS5 is a key modulator of TNF signaling circuit with resultant activation of astrocytes thereby contributing to chronic neuroinflammation. Blockade of the astrocytic RGS5/TNFR interaction is a potential therapeutic strategy for neuroinflammation-associated neurodegenerative diseases.


Assuntos
Doenças Neuroinflamatórias , Proteínas RGS , Animais , Astrócitos , Transdução de Sinais , Proteínas RGS/genética , Inflamação
5.
Neoplasma ; 69(3): 594-602, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35263995

RESUMO

Long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) is nuclear-located and transcribed from chromatin 11. To date, little is known about the cellular functions and regulatory mechanisms of NEAT1 in prostate cancer (PCa). In this study, whole-genome RNA sequencing data were downloaded from TCGA and GEO databases. Biological information was used to analyze the different expressions of NEAT1. In situ hybridization (ISH) was performed to detect the expression of NEAT1 in PCa and paracarcinoma clinical samples. Then, NEAT1 was knocked down in PC3 cells through lentiviral infection with a plasmid construct. Bioinformatics and integrative analytical approaches were utilized to identify the relationships of NEAT1 with specific cancer-related gene sets. Cell proliferation assay and colony formation assay were performed to evaluate the cell proliferative ability. Glycolysis stress test, metabolism assay, and infiltrating T-cell function analysis were implemented to assess the changes in metabolism and immune microenvironment of PCa. We found that the expression of NEAT1 was higher in PCa than in non-neoplastic tissues. The cell proliferative capability of PCa cells was significantly reduced in the NEAT1 knockdown group. PCR array and bioinformatics analysis revealed that the enrichment of acidic substance-related gene sets was associated with NEAT1 expression. NEAT1 depletion inhibited PCa cell aerobic glycolysis accompanied by the reduction of lactate levels in the medium. Further, we found that lactate dehydrogenase A (LDHA) expression was positively regulated by NEAT1. At last, co-culture systems indicated that NEAT1 or LDHA knockdown promoted the secretion of CD8+ T-lymphocyte factors, including TNF-α, IFN-γ, and Granzyme B, and enhanced the antitumor effects.


Assuntos
Vigilância Imunológica , MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Linfócitos T , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glicólise/genética , Humanos , Masculino , MicroRNAs/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , Linfócitos T/imunologia , Microambiente Tumoral
6.
Urol Int ; 104(3-4): 230-238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31770767

RESUMO

OBJECTIVE: To investigate the optimal age for the baseline serum prostate-specific antigen (PSA) test and for repeat screening and its economic burden in a single center in China. MATERIALS AND METHODS: 35,533 men with PSA screening were retrospectively enrolled in this study. Follow-ups were conducted in 1,586 men with PSA >4 ng/mL, and receiver-operating characteristic (ROC) curves were employed to investigate the optimal cutoffs. RESULTS: ROC analysis indicated that the optimal age for initial PSA screening was 57.5 years (AUC = 0.84), 62.5 years (AUC = 0.902), 60.5 years (AUC = 0.909), and 61.5 years (AUC = 0.890) for individuals with PSA >4 and >10 ng/mL, a diagnosis of prostate cancer (PCa), and clinically significant PCa defined as the focus events, respectively. For Chinese men aged 50-59, 60-69, and >70 years, the initial PSA levels of 1.305 ng/mL (AUC = 0.699), 1.975 ng/mL (AUC = 0.711), and 2.740 ng/mL (AUC = 0.720) might have a PSA velocity >0.75 ng/mL per year during the follow-up. In addition, the total cost amounts to CNY 13,609,260 in these cases, but only 60 of the 35,533 (0.17%) men gained benefit from PSA screening. CONCLUSION: In our opinion, the optimal starting age for initial PSA testing was 57.5 years. The necessity for repeat screening should be based on the first PSA level depending on age. A cost--benefit analysis should be included in population-based screening.


Assuntos
Detecção Precoce de Câncer/economia , Detecção Precoce de Câncer/estatística & dados numéricos , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/economia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo
7.
J Asian Nat Prod Res ; 22(6): 537-546, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31339359

RESUMO

Flavonoids are important secondary metabolites that exist in many medicinal plants. Flavonoid glycosyltransferases can transfer sugar moieties to their parent rings, producing various flavonoid glycosides with significant pharmacological activities. Here, we report the molecular cloning of the O-glycosyltransferase TwUGT2 from Tripterygium wilfordii and its catalytic activity was explored by heterologous expression in E. coli. The results showed that TwUGT2 has specific glycosyltransferase activity towards C-3 and 7 hydroxyl groups of flavonoids, thereby converting quercetin and pinocembrin into isoquercitrin and pinocembrin 7-O-beta-D-glucoside, respectively. The identification of TwUGT2 will provide a useful molecular tool for synthetic biology and contribute to drug discovery.[Formula: see text].


Assuntos
Flavonoides , Tripterygium , Escherichia coli , Glicosiltransferases , Estrutura Molecular
8.
Glia ; 67(6): 1017-1035, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30548343

RESUMO

Neuroinflammation in the central nervous system (CNS) is an important subject of neuroimmunological research. Emerging evidence suggests that neuroinflammation is a key player in various neurological disorders, including neurodegenerative diseases and CNS injury. Neuroinflammation is a complex and well-orchestrated process by various groups of glial cells in CNS and peripheral immune cells. The cross-talks between various groups of glial cells in CNS neuroinflammation is an extremely complex and dynamic process which resembles a well-orchestrated symphony. However, the understanding of how glial cells interact with each other to shape the distinctive immune responses of the CNS remains limited. In this review, we will discuss the joint actions of glial cells in three phases of neuroinflammation, including initiation, progression, and prognosis, the three movements of the symphony, as the role of each type of glial cells in neuroinflammation depends on the nature of inflammatory cues and specific course of diseases. This perspective of glial cells in neuroinflammation might provide helpful clues to the development of the early diagnosis and therapeutic intervention of the various CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/metabolismo , Mediadores da Inflamação/metabolismo , Neuroglia/metabolismo , Animais , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/patologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/imunologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/imunologia , Neuroglia/patologia
9.
Biochem Biophys Res Commun ; 508(1): 282-288, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30497777

RESUMO

Neuroinflammation is considered a challenging clinical problem. Chronic inflammatory responses play important roles in the onset and progression of various neurodegenerative diseases, including multiple sclerosis (MS). Previous studies have shown that astrocytes express small heat shock protein αB-crystallin (CRYAB) which is capable of inhibiting inflammatory responses in astrocytes per se. However, the underlying mechanisms of CRYAB-induced modulation of neuroinflammation are still not fully understood. In the present study, we investigated the role of extracellular CRYAB in the interaction between microglia and astrocytes in the context of MS-associated neuroinflammation. We found that the expression of CRYAB was profoundly increased in EAE mice. CRYAB was preferentially expressed in astrocytes and could be secreted via exosomes. Levels of exosomal CRYAB secreted from astrocytes were markedly increased under stress conditions. Furthermore, incubation of immortalized astrocytes or microglia cell lines with CRYAB remarkably suppressed astrocytes and microglia-mediated inflammatory responses in both autocrine and paracrine manners. Our results reveal a novel function for extracellular CRYAB in the regulation of neuroinflammation. Targeting extracellular CRYAB-modulated neuroinflammation is a potential therapeutic intervention for MS.


Assuntos
Inflamação/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo
10.
BMC Med ; 17(1): 204, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727112

RESUMO

BACKGROUND: Brain innate immunity is vital for maintaining normal brain functions. Immune homeostatic imbalances play pivotal roles in the pathogenesis of neurological diseases including Parkinson's disease (PD). However, the molecular and cellular mechanisms underlying the regulation of brain innate immunity and their significance in PD pathogenesis are still largely unknown. METHODS: Cre-inducible diphtheria toxin receptor (iDTR) and diphtheria toxin-mediated cell ablation was performed to investigate the impact of neuron-glial antigen 2 (NG2) glia on the brain innate immunity. RNA sequencing analysis was carried out to identify differentially expressed genes in mouse brain with ablated NG2 glia and lipopolysaccharide (LPS) challenge. Neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice were used to evaluate neuroinflammatory response in the presence or absence of NG2 glia. The survival of dopaminergic neurons or glial cell activation was evaluated by immunohistochemistry. Co-cultures of NG2 glia and microglia were used to examine the influence of NG2 glia to microglial activation. RESULTS: We show that NG2 glia are required for the maintenance of immune homeostasis in the brain via transforming growth factor-ß2 (TGF-ß2)-TGF-ß type II receptor (TGFBR2)-CX3C chemokine receptor 1 (CX3CR1) signaling, which suppresses the activation of microglia. We demonstrate that mice with ablated NG2 glia display a profound downregulation of the expression of microglia-specific signature genes and remarkable inflammatory response in the brain following exposure to endotoxin lipopolysaccharides. Gain- or loss-of-function studies show that NG2 glia-derived TGF-ß2 and its receptor TGFBR2 in microglia are key regulators of the CX3CR1-modulated immune response. Furthermore, deficiency of NG2 glia contributes to neuroinflammation and nigral dopaminergic neuron loss in MPTP-induced mouse PD model. CONCLUSIONS: These findings suggest that NG2 glia play a critical role in modulation of neuroinflammation and provide a compelling rationale for the development of new therapeutics for neurological disorders.


Assuntos
Antígenos/fisiologia , Encéfalo/imunologia , Imunidade Inata , Neuroglia/fisiologia , Doença de Parkinson/imunologia , Proteoglicanas/fisiologia , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Animais , Encéfalo/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/fisiologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA