RESUMO
Immune tolerance mechanisms are shared in cancer and pregnancy. Through cross-analyzing single-cell RNA-sequencing data from multiple human cancer types and the maternal-fetal interface, we found B7-H4 (VTCN1) is an onco-fetal immune tolerance checkpoint. We showed that genetic deficiency of B7-H4 resulted in immune activation and fetal resorption in allogeneic pregnancy models. Analogously, B7-H4 contributed to MPA/DMBA-induced breast cancer progression, accompanied by CD8+ T cell exhaustion. Female hormone screening revealed that progesterone stimulated B7-H4 expression in placental and breast cancer cells. Mechanistically, progesterone receptor (PR) bound to a newly identified -58 kb enhancer, thereby mediating B7-H4 transcription via the PR-P300-BRD4 axis. PR antagonist or BRD4 degrader potentiated immunotherapy in a murine B7-H4+ breast cancer model. Thus, our work unravels a mechanistic and biological connection of a female sex hormone (progesterone) to onco-fetal immune tolerance via B7-H4 and suggests that the PR-P300-BRD4 axis is targetable for treating B7-H4+ cancer.
Assuntos
Tolerância Imunológica , Progesterona , Progestinas , Inibidor 1 da Ativação de Células T com Domínio V-Set , Animais , Feminino , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Humanos , Camundongos , Gravidez , Progestinas/farmacologia , Progestinas/metabolismo , Progesterona/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placenta/imunologiaRESUMO
Targeting the p53-MDM2 pathway to reactivate tumor p53 is a chemotherapeutic approach. However, the involvement of this pathway in CD8+ T cell-mediated antitumor immunity is unknown. Here, we report that mice with MDM2 deficiency in T cells exhibit accelerated tumor progression and a decrease in tumor-infiltrating CD8+ T cell survival and function. Mechanistically, MDM2 competes with c-Cbl for STAT5 binding, reduces c-Cbl-mediated STAT5 degradation and enhances STAT5 stability in tumor-infiltrating CD8+ T cells. Targeting the p53-MDM2 interaction with a pharmacological agent, APG-115, augmented MDM2 in T cells, thereby stabilizing STAT5, boosting T cell immunity and synergizing with cancer immunotherapy. Unexpectedly, these effects of APG-115 were dependent on p53 and MDM2 in T cells. Clinically, MDM2 abundance correlated with T cell function and interferon-γ signature in patients with cancer. Thus, the p53-MDM2 pathway controls T cell immunity, and targeting this pathway may treat patients with cancer regardless of tumor p53 status.
Assuntos
Linfócitos T CD8-Positivos/enzimologia , Linfócitos do Interstício Tumoral/enzimologia , Neoplasias/enzimologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/transplante , Linhagem Celular Tumoral , Terapia Combinada , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Imunoterapia Adotiva , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Estabilidade Proteica , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/genética , Fator de Transcrição STAT5/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Tremendous progress in nanotechnology has enabled advances in the use of luminescent nanomaterials in imaging, sensing and photonic devices. This translational process relies on controlling the photophysical properties of the building block, that is, single luminescent nanoparticles. In this Review, we highlight the importance of single-particle spectroscopy in revealing the diverse optical properties and functionalities of nanomaterials, and compare it with ensemble fluorescence spectroscopy. The information provided by this technique has guided materials science in tailoring the synthesis of nanomaterials to achieve optical uniformity and to develop novel applications. We discuss the opportunities and challenges that arise from pushing the resolution limit, integrating measurement and manipulation modalities, and establishing the relationship between the structure and functionality of single nanoparticles.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Biological materials, such as bones, teeth and mollusc shells, are well known for their excellent strength, modulus and toughness1-3. Such properties are attributed to the elaborate layered microstructure of inorganic reinforcing nanofillers, especially two-dimensional nanosheets or nanoplatelets, within a ductile organic matrix4-6. Inspired by these biological structures, several assembly strategies-including layer-by-layer4,7,8, casting9,10, vacuum filtration11-13 and use of magnetic fields14,15-have been used to develop layered nanocomposites. However, how to produce ultrastrong layered nanocomposites in a universal, viable and scalable manner remains an open issue. Here we present a strategy to produce nanocomposites with highly ordered layered structures using shear-flow-induced alignment of two-dimensional nanosheets at an immiscible hydrogel/oil interface. For example, nanocomposites based on nanosheets of graphene oxide and clay exhibit a tensile strength of up to 1,215 ± 80 megapascals and a Young's modulus of 198.8 ± 6.5 gigapascals, which are 9.0 and 2.8 times higher, respectively, than those of natural nacre (mother of pearl). When nanosheets of clay are used, the toughness of the resulting nanocomposite can reach 36.7 ± 3.0 megajoules per cubic metre, which is 20.4 times higher than that of natural nacre; meanwhile, the tensile strength is 1,195 ± 60 megapascals. Quantitative analysis indicates that the well aligned nanosheets form a critical interphase, and this results in the observed mechanical properties. We consider that our strategy, which could be readily extended to align a variety of two-dimensional nanofillers, could be applied to a wide range of structural composites and lead to the development of high-performance composites.
Assuntos
Materiais Biomiméticos/química , Materiais Biomiméticos/síntese química , Nanocompostos/química , Resistência à Tração , Módulo de Elasticidade , Grafite/química , Hidrogéis/química , Nácar/químicaRESUMO
Protein function prediction based on amino acid sequence alone is an extremely challenging but important task, especially in metagenomics/metatranscriptomics field, in which novel proteins have been uncovered exponentially from new microorganisms. Many of them are extremely low homology to known proteins and cannot be annotated with homology-based or information integrative methods. To overcome this problem, we proposed a Homology Independent protein Function annotation method (HiFun) based on a unified deep-learning model by reassembling the sequence as protein language. The robustness of HiFun was evaluated using the benchmark datasets and metrics in the CAFA3 challenge. To navigate the utility of HiFun, we annotated 2 212 663 unknown proteins and discovered novel motifs in the UHGP-50 catalog. We proved that HiFun can extract latent function related structure features which empowers it ability to achieve function annotation for non-homology proteins. HiFun can substantially improve newly proteins annotation and expand our understanding of microorganisms' adaptation in various ecological niches. Moreover, we provided a free and accessible webservice at http://www.unimd.org/HiFun, requiring only protein sequences as input, offering researchers an efficient and practical platform for predicting protein functions.
Assuntos
Benchmarking , Idioma , Sequência de Aminoácidos , Metagenômica , Anotação de Sequência MolecularRESUMO
Cancer immunotherapy restores or enhances the effector function of CD8+ T cells in the tumour microenvironment1,2. CD8+ T cells activated by cancer immunotherapy clear tumours mainly by inducing cell death through perforin-granzyme and Fas-Fas ligand pathways3,4. Ferroptosis is a form of cell death that differs from apoptosis and results from iron-dependent accumulation of lipid peroxide5,6. Although it has been investigated in vitro7,8, there is emerging evidence that ferroptosis might be implicated in a variety of pathological scenarios9,10. It is unclear whether, and how, ferroptosis is involved in T cell immunity and cancer immunotherapy. Here we show that immunotherapy-activated CD8+ T cells enhance ferroptosis-specific lipid peroxidation in tumour cells, and that increased ferroptosis contributes to the anti-tumour efficacy of immunotherapy. Mechanistically, interferon gamma (IFNγ) released from CD8+ T cells downregulates the expression of SLC3A2 and SLC7A11, two subunits of the glutamate-cystine antiporter system xc-, impairs the uptake of cystine by tumour cells, and as a consequence, promotes tumour cell lipid peroxidation and ferroptosis. In mouse models, depletion of cystine or cysteine by cyst(e)inase (an engineered enzyme that degrades both cystine and cysteine) in combination with checkpoint blockade synergistically enhanced T cell-mediated anti-tumour immunity and induced ferroptosis in tumour cells. Expression of system xc- was negatively associated, in cancer patients, with CD8+ T cell signature, IFNγ expression, and patient outcome. Analyses of human transcriptomes before and during nivolumab therapy revealed that clinical benefits correlate with reduced expression of SLC3A2 and increased IFNγ and CD8. Thus, T cell-promoted tumour ferroptosis is an anti-tumour mechanism, and targeting this pathway in combination with checkpoint blockade is a potential therapeutic approach.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Ferroptose , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Cisteína/metabolismo , Feminino , Ferroptose/efeitos dos fármacos , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Humanos , Interferon gama/imunologia , Peroxidação de Lipídeos , Melanoma/genética , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/terapia , Camundongos , Neoplasias/metabolismo , Nivolumabe/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Resultado do TratamentoRESUMO
The intracellular metabolism of organelles, like lysosomes and mitochondria, is highly coordinated spatiotemporally and functionally. The activities of lysosomal enzymes significantly rely on the cytoplasmic temperature, and heat is constantly released by mitochondria as the byproduct of adenosine triphosphate (ATP) generation during active metabolism. Here, we developed temperature-sensitive LysoDots and MitoDots to monitor the in situ thermal dynamics of lysosomes and mitochondria. The design is based on upconversion nanoparticles (UCNPs) with high-density surface modifications to achieve the exceptionally high sensitivity of 2.7% K-1 and low uncertainty of 0.8 K for nanothermometry to be used in living cells. We show the measurement is independent of the ion concentrations and pH values. With Ca2+ ion shock, the temperatures of both lysosomes and mitochondria increased by â¼2 to 4 °C. Intriguingly, with chloroquine (CQ) treatment, the lysosomal temperature was observed to decrease by up to â¼3 °C, while mitochondria remained relatively stable. Lastly, with oxidative phosphorylation inhibitor treatment, we observed an â¼3 to 7 °C temperature increase and a thermal transition from mitochondria to lysosomes. These observations indicate different metabolic pathways and thermal transitions between lysosomes and mitochondria inside HeLa cells. The nanothermometry probes provide a powerful tool for multimodality functional imaging of subcellular organelles and interactions with high spatial, temporal, and thermal dynamics resolutions.
Assuntos
Lisossomos , Nanopartículas , Humanos , Temperatura , Células HeLa , Lisossomos/metabolismo , Organelas/metabolismo , Mitocôndrias/metabolismoRESUMO
Upconversion nanoparticles are popular as imaging probes due to their advantages in photostability and controllable emission dimensions. However, upconversion polarization remains largely uncharted with previous reports limited to microstructures. In this work, we report the observation of polarized upconversion emissions from ß-NaYF4 single nanostructures below 100 nm. At the sub-100 nm scale, nanorods, nanodiscs, and nanoplates exhibit distinctive polarization degrees despite the same doping concentrations of lanthanides. We find this varied polarization degree results from the crystallographic orientation of nanostructure in relation to the light field and can be linked to the distinctive emission spectrum profile with varied Stark splitting transition ratios from Er3+. Our findings provide a comprehensive understanding of the polarization properties of upconversion nanoparticles, revealing a previously unexplored aspect of light emission. This discovery expands our knowledge of upconversion nanoparticles and also opens new possibilities for their use in future imaging and sensing applications, where polarization sensitivity is crucial.
RESUMO
Temperature regulates nonradiative processes in luminescent materials, fundamental to luminescence nanothermometry. However, elevated temperatures often suppress the radiative process, limiting the sensitivity of thermometers. Here, we introduce an approach to populating the excited state of lanthanides at elevated temperatures, resulting in a sizable lifetime lengthening and intensity increase of the near-infrared (NIR)-II emission. The key is to create a five-energy-level system and use a pair of lanthanides to leverage the cross-relaxation process. We observed the lifetime of NIR-II emission of Er3+ has been remarkably increased from 3.85 to 7.54 ms by codoping only 0.5 mol % Ce3+ at 20 °C and further increased to 7.80 ms when increasing the temperature to 40 °C. Moreover, this concept is universal across four ion pairs and remains stable within aqueous nanoparticles. Our findings emphasize the need to design energy transfer systems that overcome the constraint of thermal quenching, enabling efficient imaging and sensing.
RESUMO
In living organisms, precise control over the spatial and temporal distribution of molecules, including pheromones, is crucial. This level of control is equally important for the development of artificial active materials. In this study, we successfully controlled the distribution of small molecules in the system at nonequilibrium states by actively transporting them, even against the apparent concentration gradient, with high selectivity. As a demonstration, in the aqueous solution of acid orange (AO7) and TMC10COOH, we found that AO7 molecules can coassemble with transient anhydride (TMC10CO)2O to form larger assemblies in the presence of chemical fuel 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC). This led to a decrease in local free AO7 concentration and caused AO7 molecules from other locations in the solution to move toward the assemblies. Consequently, AO7 accumulates at the location where EDC was injected. By continuously injecting EDC, we could maintain a stable high value of the apparent AO7 concentration at the injection point. We also observed that this process which operated at nonequilibrium states exhibited high selectivity.
RESUMO
Traditional single-molecule fluorescence in situ hybridization (smFISH) methods for RNA detection often face sensitivity challenges due to the low fluorescence intensity of the probe. Also, short-lived autofluorescence complicates obtaining clear signals from tissue sections. In response, we have developed an smFISH probe using highly grafted lanthanide complexes to address both concentration quenching and autofluorescence background. Our approach involves an oligo PCR incorporating azide-dUTP, enabling conjugation with lanthanide complexes. This method has proven to be stable, convenient, and cost-effective. Notably, for the mRNA detection in SKBR3 cells, the lanthanide probe group exhibited 2.5 times higher luminescence intensity and detected 3 times more signal points in cells compared with the Cy3 group. Furthermore, we successfully applied the probe to image HER2 mRNA molecules in breast cancer FFPE tissue sections, achieving a 2.7-fold improvement in sensitivity compared to Cy3-based probes. These results emphasize the potential of time-resolved smFISH as a highly sensitive method for nucleic acid detection, free of background fluorescence interference.
Assuntos
Elementos da Série dos Lantanídeos , Hibridização in Situ Fluorescente/métodos , RNA/análise , RNA Mensageiro/genética , Diagnóstico por ImagemRESUMO
The paper-based lateral flow assay (LFA) testing strips are currently the most widely used for point-of-care testing (POCT), valued for their rapid result turnaround times in a few minutes. However, their sensitivity has been limited. Upconversion nanoparticles (UCNPs), especially highly doped ones, have emerged as promising luminescent reporters to enhance the LFA sensitivity. These UCNPs exhibit a nonlinear enhancement in luminescence with excitation power density, necessitating higher power densities for higher brightness. In this study, we utilized a geometric paper strip design to minimize the immune reaction area and maximize the excitation power density, enabling ultrasensitive detection of the SARS-CoV-2 nucleoprotein antigen. This design also slowed the antigen flow on the paper strip, extending the reaction time between antigen and antibody, thereby enhancing the efficiency of the immune reaction. Through this design, our approach achieved over a 100-fold enhancement in the limit of detection (LOD) compared with the widely used LFAs, based on gold colloidal nanoparticles and europium nanoparticles. This innovation expands the scope of LFA applications that require a low LOD.
Assuntos
Limite de Detecção , SARS-CoV-2 , SARS-CoV-2/imunologia , Humanos , COVID-19/diagnóstico , COVID-19/virologia , Nanopartículas/química , Antígenos Virais/imunologia , Antígenos Virais/análise , Európio/química , Ouro/química , Papel , Nanopartículas Metálicas/química , Testes Imediatos , Imunoensaio/métodosRESUMO
MOTIVATION: Antibiotic resistance presents a formidable global challenge to public health and the environment. While considerable endeavors have been dedicated to identify antibiotic resistance genes (ARGs) for assessing the threat of antibiotic resistance, recent extensive investigations using metagenomic and metatranscriptomic approaches have unveiled a noteworthy concern. A significant fraction of proteins defies annotation through conventional sequence similarity-based methods, an issue that extends to ARGs, potentially leading to their under-recognition due to dissimilarities at the sequence level. RESULTS: Herein, we proposed an Artificial Intelligence-powered ARG identification framework using a pretrained large protein language model, enabling ARG identification and resistance category classification simultaneously. The proposed PLM-ARG was developed based on the most comprehensive ARG and related resistance category information (>28K ARGs and associated 29 resistance categories), yielding Matthew's correlation coefficients (MCCs) of 0.983 ± 0.001 by using a 5-fold cross-validation strategy. Furthermore, the PLM-ARG model was verified using an independent validation set and achieved an MCC of 0.838, outperforming other publicly available ARG prediction tools with an improvement range of 51.8%-107.9%. Moreover, the utility of the proposed PLM-ARG model was demonstrated by annotating resistance in the UniProt database and evaluating the impact of ARGs on the Earth's environmental microbiota. AVAILABILITY AND IMPLEMENTATION: PLM-ARG is available for academic purposes at https://github.com/Junwu302/PLM-ARG, and a user-friendly webserver (http://www.unimd.org/PLM-ARG) is also provided.
Assuntos
Antibacterianos , Inteligência Artificial , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , MetagenomaRESUMO
In order to reduce the consumption of sand and gravel resources, the use of loess can reduce transportation costs and realize the in-situ construction of spongy in areas with rich loess resources. But the collapsibility and low permeability of loess make it unable to be directly used as the filler of bioretention cells. In this study, sulfoaluminate cement (SAC) mixed with a small amount of basalt fiber was considered to be used for loess modification, and the physicochemical properties and nutrient removal effect of SAC-modified loess as filler in bioretention cells were comprehensively evaluated. The results showed that when the SAC dosage was 15% and the basalt fiber addition was 0% (S15B0) and 0.6% (S15B6) and the curing time was 14 days, the stability and appropriate permeability can be exhibited, which can preliminarily satisfy the requirements of bioretention cell. SAC made the maximum adsorption capacity of S15B0 and S15B6 for ammonia nitrogen (NH4+-N) and phosphate higher than that of sand by 10.96%-31.51% and 45.92%-76.72%, respectively. The hydration products in SAC modified loess can fill the internal pores of loess particles and provide structural support, and ultimately reduce the accumulated pores, mesoporous pore size (20%) and surface homogeneity. Both S15B0 and S15B6 showed good removal effects of NH4+-N and COD. The TP removal efficiency was stable at 95.43%â¼99.95%. Both the antecedent drying days and the submerged zone have an effect on the nitrogen removal in the bioretention cells, where a longer antecedent drying days is detrimental to the nitrogen removal, and the installation of a submerged zone improves the nitrogen removal. The basalt fiber can enhance the transformation process from nitrate-nitrogen to nitrite-nitrogen in the bioretention cell. Therefore, the modification of SAC can provide a certain idea for the in-situ use of loess as the filler of the bioretention cell.
Assuntos
Materiais de Construção , Poluentes Químicos da Água/química , Adsorção , Movimentos da Água , NitrogênioRESUMO
The topology of a polymer profoundly influences its behavior. However, its effect on imbibition dynamics remains poorly understood. In the present work, capillary filling (during imbibition and following full imbibition) of star polymer melts was investigated by molecular dynamics simulations with a coarse-grained model. The reversal of imbibition dynamics observed for linear-chain systems was also present for star polymers. Star polymers with short arms penetrate slower than the prediction of the Lucas-Washburn equation, while systems with long arms penetrate faster. The radius of gyration increases during confined flow, indicating the orientation and disentanglement of arms. In addition, the higher the functionality of the star polymer, the more entanglement points are retained. Besides, a stiff region near the core segments of the stars is observed, which increases in size with functionality. The proportion of different configurations of the arms (e.g., loops, trains, tails) changes dramatically with the arm length and degree of confinement but is only influenced by the functionality when the arms are short. Following full imbibition, the different decay rates of the self-correlation function of the core-to-end vector illustrate that arms take a longer time to reach the equilibrium state as the functionality, arm length, and degree of confinement increase, in agreement with recent experimental findings. Furthermore, the star topology induces a stronger effect of adsorption and friction, which becomes more pronounced with increasing functionality.
RESUMO
The prevention of drying-induced cracking is crucial in maintaining the mechanical integrity and functionality of colloidal deposits and coatings. Despite exploring various approaches, controlling drying-induced cracking remains a subject of great scientific interest and practical importance. By introducing chain-like particles composed of the same material and with comparable size into commonly used colloidal suspensions of spherical silica nanoparticles, we can significantly reduce the cracks formed in dried particle deposits and achieve a fivefold increase in the critical cracking thickness of colloidal silica coatings. The mechanism underlying the crack suppression is attributed to the increased porosity and pore sizes in dried particle deposits containing chain-like particle, which essentially leads to reduction in internal stresses developed during the drying process. Meanwhile, the nanoindentation measurements reveal that colloidal deposits with chain-like particles exhibit a smaller reduction in hardness compared to those reported using other cracking suppression approaches. This work demonstrates a promising technique for preparing colloidal coatings with enhanced crack resistance while maintaining desirable mechanical properties.
RESUMO
OBJECTIVES: Older adults are at an elevated risk of experiencing long COVID, with post-COVID-19 depressive symptoms being prevalent. However, the protective factors against this remain understudied. This study examined (a) the role of resilience in the association between COVID-19 infection and depressive symptoms in aging adults; (b) the moderating role of family functioning in the relationships between COVID-19 and resilience and between resilience and depressive symptoms; and (c) potential gender differences in the moderation. METHOD: Data were drawn from the first wave of the Panel Study of Active Ageing and Society, a representative survey of Hong Kong adults aged 50 or above. Mediation and moderated mediation analyses were conducted. RESULTS: Approximately 35% of the participants had tested positive for COVID-19. Resilience significantly mediated the association between COVID-19 infection and post-COVID-19 depressive symptoms (p < 0.001). Family functioning was a significant moderator: the COVID-19-resilience association was stronger, and the resilience-depressive symptoms association was weaker among participants with higher family functioning. The moderating role of family functioning was more salient in women than in men. CONCLUSION: Resilience can protect aging adults from post-COVID-19 depressive symptoms. Interventions for enhancing family functioning may promote the formation of resilience, especially among older women.
RESUMO
Multiphoton upconversion super-resolution microscopy (MPUM) is a promising imaging modality, which can provide increased resolution and penetration depth by using nonlinear near-infrared emission light through the so-called transparent biological window. However, a high excitation power is needed to achieve emission saturation, which increases phototoxicity. Here, we present an approach to realize the nonlinear saturation emission under a low excitation power by a simply designed on-chip mirror. The interference of the local electromagnetic field can easily confine the point spread function to a specific area to increase the excitation efficiency, which enables emission saturation under a lower excitation power. With no additional complexity, the mirror assists to decrease the excitation power by 10-fold and facilities the achievement of a lateral resolution around 35 nm, 1/28th of the excitation wavelength, in imaging of a single nanoparticle on-chip. This method offers a simple solution for super-resolution enhancement by a predesigned on-chip device.
RESUMO
We demonstrate the effect of spin-momentum locking of upconversion photoluminescence emitted from rare-earth doped nanocrystals coupled to a phase-gradient dielectric metasurface. We observe different directionalities for left and right circular polarized light and associate this experimental observation with the photonic Rashba effect realized for upconverted photoluminescence that is manifested in the spin-dependent splitting of emitted light in the momentum space.