Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(29): 20270-20278, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39011628

RESUMO

We introduce a method for the (Z)-selective aminoallylation of a range of ketones to prepare allylic 1,2-amino tertiary alcohols with excellent diastereo- and enantioselectivity. Copper-catalyzed reductive couplings of 2-azatrienes with aryl/alkyl and dialkyl ketones proceed with Ph-BPE as the supporting ligand, generating anti-amino alcohols with >98% (Z)-selectivity under mild conditions. The utility of the products is highlighted through several transformations, including those that leverage the (Z)-allylic amine moiety for diastereoselective reactions of the alkene. Calculations illustrate Curtin-Hammett control in the product formation over other possible isomers and the origin of (Z)-selectivity.

2.
J Virol ; 97(11): e0127923, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37843372

RESUMO

IMPORTANCE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants achieved immune escape and became less virulent and easily transmissible through rapid mutation in the spike protein, thus the efficacy of vaccines on the market or in development continues to be challenged. Updating the vaccine, exploring compromise vaccination strategies, and evaluating the efficacy of candidate vaccines for the emerging variants in a timely manner are important to combat complex and volatile SARS-CoV-2. This study reports that vaccines prepared from the dimeric receptor-binding domain (RBD) recombinant protein, which can be quickly produced using a mature and stable process platform, had both good immunogenicity and protection in vivo and could completely protect rodents from lethal challenge by SARS-CoV-2 and its variants, including the emerging Omicron XBB.1.16, highlighting the value of dimeric recombinant vaccines in the post-COVID-19 era.


Assuntos
Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , COVID-19/virologia , Mutação , Polímeros , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/química , Vacinas contra COVID-19/imunologia
3.
J Biol Inorg Chem ; 29(1): 87-99, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141090

RESUMO

Six aroylhydrazone di-m-chlorobenzyltin complexes {[X-C6H4(O)C=N-N=C(Me)COO](MeOH)(m-Cl-C6H4CH2)2Sn}2 (X = p-Me- (1), p-MeO- (2), p-t-Bu- (3), p-NO2- (4), p-OH- (5) or o-OH- (6)) were synthesized and characterized by HRMS (high-resolution mass spectrometry), NMR (nuclear magnetic resonance spectroscopy), IR (Fourier transform infrared spectroscopy), and TGA (thermogravimetric analysis) techniques. The molecular structure of complexes 1-6 was confirmed by single-crystal X-ray crystallography. The structure of complexes showed a distorted pentagonal bipyramidal configuration around the tin atom center, and the ligands adopted a tridentate chelating mode. Fascinatingly, either one-dimensional infinite chain structures or two-dimensional network structures were observed in the complexes through hydrogen bonds. Complex 2 has the strongest inhibitory effect on MCF7 and HepG2 cell proliferation, its effect was superior to that of the positive control drug cisplatin. The interaction of ct-DNA (calf-thymus DNA) with complex 2 was explored using UV absorption (ultraviolet absorption) and fluorescence spectroscopy. Complex 2 exhibited a moderate affinity for ct-DNA through intercalation modes. The interaction of complex 2 with ct-DNA has also been supported by molecular docking studies.


Assuntos
Complexos de Coordenação , DNA , Hidróxidos , Simulação de Acoplamento Molecular , Estrutura Molecular , Espectroscopia de Ressonância Magnética , DNA/química , Cristalografia por Raios X , Complexos de Coordenação/química , Ligantes
4.
J Org Chem ; 89(15): 10953-10964, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39016014

RESUMO

Regiodivergent transition-metal-catalyzed oxidative C5- and ortho-alkynylation of 2-arylthiazoles have been demonstrated. Namely, Pd(II)-catalysis selectively generated C5-alkynylated products from the reaction of 2-arylthiazoles and terminal alkynes. In contrast, Ru(II)-catalysis exclusively provided ortho-alkynylated products from the same substrates. This protocol features a wide substrate scope, good functional group tolerance, high atom-economy, and exclusive regioselectivity. The alkynylated products can be readily converted into highly valuable synthons, which hold potential for applications in the fields of medicinal chemistry and materials science.

5.
Environ Res ; 244: 117898, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092242

RESUMO

Sorption by soil is the fundamental basis for environment fate of hydrophobic organic contaminants (HOCs), which varies significantly depending on diverse properties of soils. Therefore, a generalized approach to predict HOC sorption by soils is required. In this study, 488 data points were extracted from references and adopted to develop models for estimating the sorption capacities of phenanthrene in soils using six different machine learning (ML) approaches. The extreme gradient boosting (XGBT) model demonstrated the most favorable performance, achieving a coefficient of determination of 0.91 and root-mean-square errors of 0.24 for the testing dataset. The XGBT model's performance was further demonstrated by comparing with experimental data from batch sorption tests conducted on 20 soil samples collected from 17 provinces of China. The differences between the predicted values and the experimental values were statistically equal to zero (p = 0.14). Leveraging the XBGT model together with soil properties from the Harmonized World Soil Database, the distribution of sorption capacities in Chinese soils was successfully depicted on a national scale. This research is expected to contribute to a deeper understanding of the migration of persistent organic pollutants in terrestrial system. Furthermore, the established model holds implications for more precise and scientific soil environmental management.


Assuntos
Fenantrenos , Poluentes do Solo , Solo , Adsorção , Poluentes do Solo/análise , Interações Hidrofóbicas e Hidrofílicas , Fenantrenos/química
6.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999131

RESUMO

One of the challenging issues that hinders the application of single-walled carbon nanotubes (SWCNTs) is the poor solubility and the inevitable formation of bundles. Efforts still need to be made towards solving the problem. Herein, we report a non-covalent strategy to disperse aggregated SWCNTs by aromatic cyclic Schiff bases assisted by ultrasonic techniques. The aromatic cyclic Schiff base (OMM) was synthesized via Schiff base reactions, and the molecular structure was determined by ATR-FT-IR, solid-state 13C-NMR, and HRMS. Although the yielded product showed poor solubility in aqueous solution and organic solvents, it could interact with and disperse the aggregated SWCNTs in dimethyl formamide (DMF) under the condition of ultrasound. UV-vis-NIR, FL, Raman spectra, AFM, and TEM, along with computer simulations, provide evidence for the interactions between OMM molecules and SWCNTs and the dispersion thereof. The semiconductive (7,5), (8,6), (12,1), and (9,7)-SWCNTs expressed a preference for dissolution. The capability of dispersion is contributed by π-π, C-H·π, and lone pair (lp)·π interactions between OMM and SWCNTs based on the simulated results. The present non-covalent strategy could provide inspiration for preparing organic cyclic compounds as dispersants for SWCNTs and then facilitate their further utilization.

7.
Biochem Biophys Res Commun ; 653: 38-46, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-36857898

RESUMO

Nano-tungsten carbide (nano-WC) is widely used in composite materials due to its special physical and chemical properties. Owing to their small size, nano-WC nanoparticles easily enter organisms through the respiratory tract, which may cause health hazards. However, only a few studies have reported the toxicity of nano-WC. In this study, a 10 mg/kg nano-WC suspension and 0.9% normal saline were quantitatively perfused into the lungs of two groups of healthy male SD rats by tracheal instillation, and the in vivo pulmonary toxic effects were systematically evaluated. Additionally, as multiple organs and tissues are involved, systemic effects were observed throughout the body and mainly manifested as inflammatory damage. The concentrations of tungsten ions in various organs and alveolar lavage fluid were measured by ICP-MS, and the results showed that the lung was the target organ, as it had the highest concentration of ions. In addition, the abnormal increases in the tungsten ion concentrations in the liver and kidney may be closely related to the immune damage we observed. This study provides a theoretical basis and data support for the systematic evaluation of the health hazards of nano-WC and a reference for the safe use of nanomaterials.


Assuntos
Pneumopatias , Nanopartículas , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Pulmão , Líquido da Lavagem Broncoalveolar/química , Nanopartículas/toxicidade
8.
Biochem Biophys Res Commun ; 644: 1-7, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36621147

RESUMO

Pan-T cell targeting by CD3-based T cell engagers has brought program-shift treatment and management of blood tumors. However, these modalities have been shown to provoke all types of T cells leading to cytokine storm syndrome, and activate Treg cells. Thus, modulating and potentiating the antitumor responses of a specific T cell subset was encouraged. We initially found that high purity of mucosa-associated invariant T (MAIT) cells could be expanded by the combination of plate-immobilized Vα7.2 mAb (Clone 3C10) and IL2 plus IL15. Then, we generated a novel anti-Vα7.2 TCR bsAb, Vα7.2 x PD-L1, to invoke the anti-tumor potency of these expanded MAIT cells. Furthermore, our data have demonstrated that Vα7.2 x PD-L1 could mediate the cell-to-cell conjunction between MAIT cell and tumor cell line, selectively elicit the activation, cytokine production, degranulation, and cytotoxicity of the expanded MAIT cells in the presence of target cell only. Collectively, this proof-of-concept study provides a new tool to explore the clinical potential of MAIT cells in fighting against PD-L1 positive solid tumors and suggests additional encouragement in designing novel T cell engagers targeting TCR alpha chain specific innate-like T cells subsets, other than pan CD3+ T cells.


Assuntos
Células T Invariantes Associadas à Mucosa , Antígeno B7-H1/metabolismo , Subpopulações de Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Mucosa
9.
BMC Plant Biol ; 23(1): 463, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37794352

RESUMO

BACKGROUND: Rehmannia glutinosa is a rich source of terpenoids with a high medicinal reputation. The present study compared dedifferentiated cells (DDCs) and cambial meristematic cells (CMCs) cell cultures of R. glutinosa for terpenoid (catalpol) and indole alkaloid (IA) biosynthesis. In this regard, we used widely targeted metabolomics and transcriptome sequencing approaches together with the comparison of cell morphology, cell death (%), and catalpol production at different time points. RESULTS: We were able to identify CMCs based on their morphology and hypersensitivity to zeocin. CMCs showed higher dry weight content and better catalpol production compared to DDCs. The metabolome analysis revealed higher concentrations of IA, terpenoids, and catalpol in CMCs compared to DDCs. The transcriptome sequencing analysis showed that a total of 27,201 genes enriched in 139 pathways were differentially expressed. The higher catalpol concentration in CMCs is related to the expression changes in genes involved in acetyl-CoA and geranyl-PP biosynthesis, which are precursors for monoterpenoid biosynthesis. Moreover, the expressions of the four primary genes involved in monoterpenoid biosynthesis (NMD, CYP76A26, UGT6, and CYP76F14), along with a squalene monooxygenase, exhibit a strong association with the distinct catalpol biosynthesis. Contrarily, expression changes in AADC, STR, and RBG genes were consistent with the IA biosynthesis. Finally, we discussed the phytohormone signaling and transcription factors in relation to observed changes in metabolome. CONCLUSIONS: Overall, our study provides novel data for improving the catalpol and IA biosynthesis in R. glutinosa.


Assuntos
Rehmannia , Rehmannia/genética , Rehmannia/metabolismo , Meristema/metabolismo , Glucosídeos Iridoides/metabolismo , Alcaloides Indólicos/metabolismo
10.
Small ; 19(5): e2205638, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36417556

RESUMO

Searching for high effective catalysts has been an endless effort to improve the efficiency of green energy harvesting and degradation of pollutants. In the past decades, tremendous strategies are explored to achieve high effective catalysts, and various theoretical understandings are proposed for the improved activity. As the catalytic reaction occurs at the surface or edge, the unsaturated ions may lead to the fluctuation of spin. Meanwhile, transition metals in catalysts have diverse spin states and may yield the spin effects. Therefore, the role of spin or magnetic moment should be carefully examined. In this review, the recent development of spin catalysts is discussed to give an insightful view on the origins for the improved catalytic activity. First, a brief introduction on the applications and advances in spin-related catalytic phenomena, is given, and then the fundamental principles of spin catalysts and magnetic fields-radical reactions are introduced in the second part. The spin-related catalytic performance reported in oxygen evolution/reduction reaction (OER/ORR) is systematically discussed in the third part, and general rules are summarized accordingly. Finally, the challenges and perspectives are given. This review may provide an insightful understanding of the microscopic mechanisms of catalytic phenomena and guide the design of spin-related catalysts.

11.
Phys Rev Lett ; 131(2): 020403, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505950

RESUMO

Efficient methods to access the entanglement of a quantum many-body state, where the complexity generally scales exponentially with the system size N, have long been a concern. Here we propose the Schmidt tensor network state (Schmidt TNS) that efficiently represents the Schmidt decomposition of finite- and even infinite-size quantum states with nontrivial bipartition boundary. The key idea is to represent the Schmidt coefficients (i.e., entanglement spectrum) and transformations in the decomposition to tensor networks (TNs) with linearly scaled complexity versus N. Specifically, the transformations are written as the TNs formed by local unitary tensors, and the Schmidt coefficients are encoded in a positive-definite matrix product state (MPS). Translational invariance can be imposed on the TNs and MPS for the infinite-size cases. The validity of Schmidt TNS is demonstrated by simulating the ground state of the quasi-one-dimensional spin model with geometrical frustration. Our results show that the MPS encoding the Schmidt coefficients is weakly entangled even when the entanglement entropy of the decomposed state is strong. This justifies the efficiency of using MPS to encode the Schmidt coefficients, and promises an exponential speedup on the full-state sampling tasks.

12.
Environ Sci Technol ; 57(34): 12838-12846, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37587565

RESUMO

As MPs are released into the soil, various equilibrium statuses are expected. MPs could play roles as a "source," a "cleaner," or a "sink" of HOCs. Three types of MPs (LDPE, PLA, and PS) were selected to study their effect on polychlorinated biphenyl (PCBs) relative bioavailability (RBA) measured by a mouse model. As a "source" of HOCs, exposure to MP-sorbed PCBs resulted in their accumulation in adipose tissue with PCB RBA as 101 ± 6.73% for LDPE, 76.2 ± 19.2% for PLA, and 9.22 ± 2.02% for PS. The addition of 10% MPs in PCB-contaminated soil led to a significant (p < 0.05) reduction in PCB RBA (52.2 ± 16.7%, 49.3 ± 4.85%, and 47.1 ± 5.99% for LDPE, PLA, and PS) compared to control (75.0 ± 4.26%), implying MPs acted as "cleaner" by adsorbing PCBs from the digestive system and reducing PCB accumulation. MPs acted as a "sink" for PCBs in contaminated soil after aging, but the sink effect varied among MP types with more pronounced effect for LDPE than PLA and PS. Therefore, the role played by MPs in bioavailability of HOCs closely depended on the MP types as well as the equilibrium status among MPs, soil, and HOCs.


Assuntos
Microplásticos , Bifenilos Policlorados , Animais , Camundongos , Disponibilidade Biológica , Plásticos , Polietileno , Poliésteres
13.
Cell Mol Biol Lett ; 28(1): 47, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259060

RESUMO

BACKGROUND: Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS: HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS: HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION: We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.


Assuntos
Anticorpos Biespecíficos , Neoplasias Colorretais , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Imunoterapia , Macaca fascicularis , Anticorpos Biespecíficos/farmacologia
14.
Ren Fail ; 45(2): 2278298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37994438

RESUMO

Patients with chronic kidney disease (CKD) have high morbidity and mortality, and the disease progression has a significant impact on their survival and living standards. This research aims to analyze risk factors for CKD stage 1 and provide a reference for clinical decision making. The clinical data and peripheral blood samples of 300 patients with CKD stage 1 were collected retrospectively. Patients were randomly assigned into a training set (n = 210) and a validation set (n = 90). Patients' baseline characteristic levels were subjected to statistical tests for difference. Univariate and multivariate Cox regression analyses were utilized to identify risk factors influencing disease progression. Subsequently, a prediction model for disease progression was developed using a nomogram, and the model's accuracy was assessed using the C-index and calibration curve. The results revealed that hypertension, diabetes, and urinary albumin were essential factors in the progression of CKD stage 1. The nomogram was constructed and then the C-index was calculated. The calibration curve was utilized to assess the risk model. The C-index of the training set was 0.75, and the C-index of the validation set was 0.73, suggesting a good predictive ability of the model. The risk model accurately predicted the progression of CKD stage 1, which is of great significance to developing personalized treatment for patients in clinical practice.


Assuntos
Nomogramas , Insuficiência Renal Crônica , Humanos , Estudos Retrospectivos , Tomada de Decisão Clínica , Progressão da Doença
15.
Molecules ; 28(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894620

RESUMO

A comprehensive understanding of the structural characteristics and mechanical behavior of Fe-containing phases is important for high-Fe-level Al-Si alloys. In this paper, the crystal characteristics, thermal stability, thermophysical properties and mechanical behavior of multicomponent α-AlFeMnSi and α-AlFeMnCrSi phases are investigated by experimental studies and first-principles calculations. The results indicate that it is easier for Fe and Cr to substitute the Mn-12j site in α-AlMnSi in thermodynamics; Cr is preferred to Fe for substituting Mn-12j/k sites due to its lower formation enthalpy after single substitutions at Mn atom sites. The α-AlFeMnCrSi phase shows higher thermal stability, modulus and intrinsic hardness and a lower volumetric thermal expansion coefficient at different temperatures due to the strong chemical bonding of Si-Fe and Si-Cr. Moreover, the α-AlFeMnCrSi phase has a higher ideal strength (10.65 GPa) and lower stacking fault energy (1.10 × 103 mJ/m2). The stacking fault energy evolution of the different Fe-containing phases is mainly attributed to the differential charge-density redistribution. The strong chemical bonds of Si-Fe, Si-Mn and Si-Cr are important factors affecting the thermophysical and mechanical behaviors of the α-AlFeMnCrSi phase.

16.
Environ Sci Technol ; 56(7): 4272-4281, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35333512

RESUMO

Global spread of coronavirus disease-19 (COVID-19) is placing an unprecedented pressure on the environment and health. In this study, a new perspective is proposed to assess the inhalation bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 for people with various lung health conditions. In vitro bioaccessibility (IVBA) was measured using modified epithelial lung fluids simulating the extracellular environment of patients with severe and mild lung inflammation. The average PAH IVBA in PM2.5 of 24.5 ± 4.52% under healthy conditions increased (p = 0.06) to 28.6 ± 3.17% and significantly (p < 0.05) to 32.3 ± 5.32% under mild and severe lung inflammation conditions. A mechanistic study showed that lung inflammation decreased the critical micelle concentrations of main pulmonary surfactants (i.e., from 67.8 (for dipalmitoyl phosphatidylcholine) and 53.3 mg/L (for bovine serum albumin) to 44.5 mg/L) and promoted the formation of micelles, which enhanced the solubilization and competitive desorption of PAHs from PM2.5 in the lung fluids. In addition, risk assessment considering different IVBA values suggested that PAH contamination levels in PM2.5, which were safe for healthy people, may not be acceptable for patients with lung inflammation. Because of the large number of COVID-19 infections, and the fact that some survivors of COVID-19 were observed to still show symptoms of interstitial lung inflammation, the finding here can provide important implications for both the scientific community and policy makers in addressing health risk and air pollution control during the COVID-19 outbreak.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , COVID-19/epidemiologia , China , Monitoramento Ambiental , Humanos , Pulmão , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco
17.
J Am Chem Soc ; 143(34): 13999-14008, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424694

RESUMO

We introduce a new reagent class, 2-azatrienes, as a platform for catalytic enantioselective synthesis of allylic amines. Herein, we demonstrate their promise by a diastereodivergent synthesis of syn- and anti-1,2-diamines through their Cu-bis(phosphine)-catalyzed reductive couplings with imines. With Ph-BPE as the supporting ligand, anti-diamines are obtained (up to 91% yield, >20:1 dr, and >99:1 er), and with the rarely utilized t-Bu-BDPP, syn-diamines are generated (up to 76% yield, 1:>20 dr, and 97:3 er).


Assuntos
Compostos Aza/química , Cobre/química , Diaminas/química , Compostos Heterocíclicos/química , Catálise , Iminas/química , Conformação Molecular , Oxirredução , Estereoisomerismo
18.
Small ; 17(43): e2101605, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34310054

RESUMO

Perovskite oxides are studied as electrocatalysts for oxygen evolution reactions (OER) because of their low cost, tunable structure, high stability, and good catalytic activity. However, there are two main challenges for most perovskite oxides to be efficient in OER, namely less active sites and low electrical conductivity, leading to limited catalytic performance. To overcome these intrinsic obstacles, various strategies are developed to enhance their catalytic activities in OER. In this review, the recent developments of these strategies is comprehensively summarized and systematically discussed, including composition engineering, crystal facet control, morphology modulation, defect engineering, and hybridization. Finally, perspectives on the design of perovskite oxide-based electrocatalysts for practical applications in OER are given.

19.
Small ; 17(17): e2007557, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33733600

RESUMO

Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble-metal-free electrocatalysts for HER is promising for the application of hydrogen technology. Herein, it is reported that 3D porous hierarchical CoNiP/Cox P multi-phase heterostructure on Ni foam via an electrodeposition method followed by phosphorization exhibits ultra-highly catalytic activity for HER. The optimized CoNiP/Cox P multi-phase heterostructure achieves an excellent HER performance with an ultralow overpotential of 36 mV at 10 mA cm-2 , superior to commercial Pt/C. Importantly, the multi-phase heterostructure shows exceptional stability as confirmed by the long-term potential cycles (30,000 cycles) and extended electrocatalysis (up to 500 h) in alkaline solution and natural seawater. Experimental characterizations and DFT calculations demonstrate that the strong electronic interaction at the heterointerface of CoNiP/CoP is achieved via the electron transfer from CoNiP to the heterointerface, which directly promotes the dissociation of water at heterointerface and desorption of hydrogen on CoNiP. These findings may provide deep understanding on the HER mechanism of heterostructure electrocatalysts and guidance on the design of earth-abundant, cost-effective electrocatalysts with superior HER activity for practical applications.

20.
FASEB J ; 34(1): 95-106, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914697

RESUMO

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients, but its pathogenesis is unclear. We aimed to study the role of the pro-ANP convertase Corin in the pathogenesis of DN. Corin and ANP expression in DN rat kidneys and high-glucose-treated HK-2 cells was analyzed by real-time PCR, western blotting, and immunohistochemical staining. The effect of Corin-siRNA or ANP-siRNA HK-2 cells on EA.hy926 cell migration was determined by scratch-wound healing assay. The expression of mitogen-activated protein kinase (MAPK) and endothelial NO synthase (eNOS) in EA.hy926 cells treated with conditioned medium from Corin-siRNA- or ANP-siRNA-transfected HK-2 cells was determined by western blotting. We found a significant reduction in Corin and ANP expression in DN rat kidneys. These results were recapitulated in HK-2 cells treated with high glucose. EA.hy926 cells treated with conditioned medium from Corin-deficient HK-2 cells had inhibited migration, increased MAPK activity, and decreased eNOS activity. Similar effects were observed with ANP-siRNA transfection. Finally, adding ANP to the Corin-deficient HK-2 conditioned medium rescued the above defects, indicating that Corin mediates its effects through ANP. In conclusion, Corin plays a renoprotective role through pro-ANP processing, and defects in Corin cause endothelial dysfunction through MAPK and eNOS signaling in DN.


Assuntos
Nefropatias Diabéticas/metabolismo , Endotélio/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Serina Endopeptidases/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Diabetes Mellitus Experimental , Endotélio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/toxicidade , Células Endoteliais da Veia Umbilical Humana , Humanos , Túbulos Renais Proximais/citologia , Masculino , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Óxido Nítrico Sintase Tipo III/genética , Interferência de RNA , RNA Interferente Pequeno , Ratos Sprague-Dawley , Serina Endopeptidases/genética , Serina Endopeptidases/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA