Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(14): 10032-10043, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38563705

RESUMO

The controlled creation, selective exposure, and activation of more basal planes while simultaneously minimizing the generation and exposure of edge sites are crucial for accelerating methanol synthesis from CO2 hydrogenation over MoS2 catalysts but remain a bottleneck. Here, we report a facile method to fabricate heteronanotube catalysts with single-layer MoS2 coaxially encapsulating the carbon nanotubes (CNTs@MoS2) through host-guest chemistry. Inheriting the long tubular structure of CNTs, the grown MoS2 nanotubes exhibit significantly more basal planes than bulk MoS2 crystals. More importantly, the tubular curvature not only promotes strain and sulfur vacancy (Sv) generation but also preferentially exposes more in-plane Sv while limiting edge Sv exposure, which is conducive to methanol synthesis. Both the strain and layer number of MoS2 can be easily and finely adjusted by altering CNT diameter and quantity of precursors. Remarkably, CNTs@MoS2 with monolayer MoS2 and maximum strain displayed methanol selectivity of 78.1% and methanol space time yield of 1.6 g gMoS2-1 h-1 at 260 °C and GHSV of 24000 mL gcat.-1 h-1, representing the best results to date among Mo-based catalysts. This study provides prospects for novel catalyst design by synthesizing coaxial tubular heterostructure to create additional catalytic sites and ultimately enhance conversion and selectivity.

2.
Theor Appl Genet ; 137(4): 82, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489037

RESUMO

KEY MESSAGE: A novel locus on Agropyron cristatum chromosome 6P that increases grain number and spikelet number was identified in wheat-A. cristatum derivatives and across 3 years. Agropyron cristatum (2n = 4x = 28, PPPP), which has the characteristics of high yield with multiple flowers and spikelets, is a promising gene donor for wheat high-yield improvement. Identifying the genetic loci and genes that regulate yield could elucidate the genetic variations in yield-related traits and provide novel gene sources and insights for high-yield wheat breeding. In this study, cytological analysis and molecular marker analysis revealed that del10a and del31a were wheat-A. cristatum chromosome 6P deletion lines. Notably, del10a carried a segment of the full 6PS and 6PL bin (1-13), while del31a carried a segment of the full 6PS and 6PL bin (1-8). The agronomic characterization and genetic population analysis confirmed that the 6PL bin (9-13) brought about an increase in grain number per spike (average increase of 10.43 grains) and spikelet number per spike (average increase of 3.67) over the three growing seasons. Furthermore, through resequencing, a multiple grain number locus was mapped to the physical interval of 593.03-713.89 Mb on chromosome 6P of A. cristatum Z559. The RNA-seq analysis revealed the expression of 537 genes in the del10a young spike tissue, with the annotation indicating that 16 of these genes were associated with grain number and spikelet number. Finally, a total of ten A. cristatum-specific molecular markers were developed for this interval. In summary, this study presents novel genetic material that is useful for high-yield wheat breeding initiatives to meet the challenge of global food security through enhanced agricultural production.


Assuntos
Agropyron , Agropyron/genética , Melhoramento Vegetal , Cromossomos de Plantas/genética , Triticum/genética , Grão Comestível/genética , Loci Gênicos
3.
Theor Appl Genet ; 137(7): 165, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904787

RESUMO

KEY MESSAGE: A grain weight locus from Agropyron cristatum chromosome 5P increases grain weight in different wheat backgrounds and is localized to 5PL (bin 7-12). Thousand-grain weight is an important trait in wheat breeding, with a narrow genetic basis being the main factor limiting improvement. Agropyron cristatum, a wild relative of wheat, harbors many desirable genes for wheat improvement. Here, we found that the introduction of the 5P chromosome from A. cristatum into wheat significantly increased the thousand-grain weight by 2.55-7.10 g, and grain length was the main contributor to grain weight. An increase in grain weight was demonstrated in two commercial wheat varieties, indicating that the grain weight locus was not affected by the wheat background. To identify the chromosome segment harboring the grain weight locus, three A. cristatum 5P deletion lines, two wheat-A. cristatum 5P translocation lines and genetic populations of these lines were used to evaluate agronomic traits. We found that the translocation lines harboring the long arm of A. cristatum chromosome 5P (5PL) exhibited high grain weight and grain length, and the genetic locus associated with increased grain weight was mapped to 5PL (bin 7-12). An increase in grain weight did not adversely affect other agronomic traits in translocation line 5PT2, which is a valuable germplasm resource. Overall, we identified a grain weight locus from chromosome 5PL and provided valuable germplasm for improving wheat grain weight.


Assuntos
Agropyron , Mapeamento Cromossômico , Cromossomos de Plantas , Grão Comestível , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Agropyron/genética , Agropyron/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/genética , Introgressão Genética , Translocação Genética
4.
Theor Appl Genet ; 137(5): 110, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656338

RESUMO

KEY MESSAGE: We developed T1AL·1PS and T1AS·1PL Robertsonian translocations by breakage-fusion mechanism based on wheat-A. cristatum 1P(1A) substitution line with smaller leaf area, shorter plant height, and other excellent agronomic traits Agropyron cristatum, a wild relative of wheat, is a valuable germplasm resource for improving wheat genetic diversity and yield. Our previous study confirmed that the A. cristatum chromosome 1P carries alien genes that reduce plant height and leaf size in wheat. Here, we developed T1AL·1PS and T1AS·1PL Robertsonian translocations (RobTs) by breakage-fusion mechanism based on wheat-A. cristatum 1P (1A) substitution line II-3-1c. Combining molecular markers and cytological analysis, we identified 16 spontaneous RobTs from 911 F2 individuals derived from the cross of Jimai22 and II-3-1c. Fluorescence in situ hybridization (FISH) was applied to detect the fusion structures of the centromeres in wheat and A. cristatum chromosomes. Resequencing results indicated that the chromosomal junction point was located at the physical position of Triticum aestivum chromosome 1A (212.5 Mb) and A. cristatum chromosome 1P (230 Mb). Genomic in situ hybridization (GISH) in pollen mother cells showed that the produced translocation lines could form stable ring bivalent. Introducing chromosome 1PS translocation fragment into wheat significantly increased the number of fertile tillers, grain number per spike, and grain weight and reduced the flag leaf area. However, introducing chromosome 1PL translocation fragment into wheat significantly reduced flag leaf area and plant height with a negative effect on yield components. The pre-breeding of two spontaneous RobTs T1AL·1PS and T1AS·1PL was important for wheat architecture improvement.


Assuntos
Agropyron , Cromossomos de Plantas , Melhoramento Vegetal , Translocação Genética , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/anatomia & histologia , Agropyron/genética , Agropyron/crescimento & desenvolvimento , Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente , Fenótipo
5.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108219

RESUMO

Wild relatives of wheat are essential gene pools for broadening the genetic basis of wheat. Chromosome rearrangements and genomic variation in alien chromosomes are widespread. Knowledge of the genetic variation between alien homologous chromosomes is valuable for discovering and utilizing alien genes. In this study, we found that 5113 and II-30-5, two wheat-A. cristatum 6P addition lines, exhibited considerable differences in heading date, grain number per spike, and grain weight. Genome resequencing and transcriptome analysis revealed significant differences in the 6P chromosomes of the two addition lines, including 143,511 single-nucleotide polymorphisms, 62,103 insertion/deletion polymorphisms, and 757 differentially expressed genes. Intriguingly, genomic variations were mainly distributed in the middle of the chromosome arms and the proximal centromere region. GO and KEGG analyses of the variant genes and differentially expressed genes showed the enrichment of genes involved in the circadian rhythm, carbon metabolism, carbon fixation, and lipid metabolism, suggesting that the differential genes on the 6P chromosome are closely related to the phenotypic differences. For example, the photosynthesis-related genes PsbA, PsbT, and YCF48 were upregulated in II-30-5 compared with 5113. ACS and FabG are related to carbon fixation and fatty acid biosynthesis, respectively, and both carried modification variations and were upregulated in 5113 relative to II-30-5. Therefore, this study provides important guidance for cloning desirable genes from alien homologous chromosomes and for their effective utilization in wheat improvement.


Assuntos
Agropyron , Agropyron/genética , Hibridização Genética , Cromossomos de Plantas/genética , Fenótipo , Genômica
6.
Plant J ; 106(2): 526-535, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33533097

RESUMO

Northern corn leaf blight, caused by the fungal pathogen Setosphaeria turcica (anamorph Exserohilum turcicum), is one of the most devastating foliar diseases of maize (Zea mays). Four genes Ht1, Ht2, Ht3 and Htn1 represent the major sources of genetic resistance against the hemibiotrophic fungus S. turcica. Differential maize lines containing these genes also form the basis to classify S. turcica races. Here, we show that Ht2 and Ht3 are identical and allelic to the previously cloned Htn1 gene. Using a map-based cloning approach and Targeting Induced Local Lesions in Genomes (TILLING), we demonstrate that Ht2/Ht3 is an allele of the wall-associated receptor-like kinase gene ZmWAK-RLK1. The ZmWAK-RLK1 variants encoded by Htn1 and Ht2/Ht3 differ by multiple amino acid polymorphisms that particularly affect the putative extracellular domain. A diversity analysis in maize revealed the presence of dozens of ZmWAK-RLK1 alleles. Ht2, Ht3 and Htn1 have been described over decades as independent resistance loci with different race spectra and resistance responses. Our work demonstrates that these three genes are allelic, which has major implications for northern corn leaf blight resistance breeding and nomenclature of S. turcica pathotypes. We hypothesize that genetic background effects have confounded the classical description of these disease resistance genes in the past.


Assuntos
Ascomicetos , Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/imunologia , Folhas de Planta/imunologia , Zea mays/imunologia , Alelos , Ascomicetos/imunologia , Mapeamento Cromossômico , Fosfotransferases/genética , Fosfotransferases/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Zea mays/genética , Zea mays/microbiologia
7.
Respir Res ; 23(1): 104, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484551

RESUMO

BACKGROUND: Ionizing radiation (IR) can induce pulmonary fibrosis by causing epithelial mesenchymal transition (EMT), but the exact mechanism has not been elucidated. To investigate the molecular mechanism of how radiation induces pulmonary fibrosis by altering miR-486-3p content and thus inducing EMT. METHODS: The changes of miR-486-3p in cells after irradiation were detected by RT-qPCR. Western blot was used to detect the changes of cellular epithelial marker protein E-cadherin, mesenchymal marker N-cadherin, Vimentin and other proteins. The target gene of miR-486-3p was predicted by bioinformatics method and the binding site was verified by dual luciferase reporter system. In vivo experiments, adeno-associated virus (AAV) was used to carry miR-486-3p mimic to lung. Radiation-induced pulmonary fibrosis (RIPF) model was constructed by 25Gy60Co γ-rays. The structural changes of mouse lung were observed by HE and Masson staining. The expression of relevant proteins in mice was detected by immunohistochemistry. RESULTS: IR could decrease the miR-486-3p levels in vitro and in vivo, and that effect was closely correlated to the occurrence of RIPF. The expression of Snail, which induces EMT, was shown to be restrained by miR-486-3p. Therefore, knockdown of Snail blocked the EMT process induced by radiation or knockdown of miR-486-3p. In addition, the molecular mechanism underlying the IR-induced miRNA level reduction was explored. The increased in BCL6 could inhibit the formation of pri-miR-486-3p, thereby reducing the levels of miR-486-3p in the alveolar epithelial cells, which would otherwise promote EMT and contribute to RIPF by targeting Snail. CONCLUSION: IR can exacerbate RIPF in mice by activating the transcription factor BCL6, which inhibits the transcription of miR-486-3p and decreases its content, which in turn increases the content of the target gene slug and triggers EMT.


Assuntos
Lesão Pulmonar , MicroRNAs , Fibrose Pulmonar , Animais , Transição Epitelial-Mesenquimal/fisiologia , Pulmão/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo
8.
Theor Appl Genet ; 135(6): 1951-1963, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35378599

RESUMO

KEY MESSAGE: Introducing Agropyron cristatum chromosome 1P into common wheat can significantly reduce the plant height and leaf size, which can improve the plant architecture of common wheat. A new direction in crop breeding is the improvement of plant architecture for dense plantings to obtain higher yields. Wild relatives carry an abundant genetic variation that can increase the diversity of genes for crop genetic improvement. In this study, the A. cristatum 1P addition line, 1PS and 1PL telosomic addition lines were obtained by backcrossing the addition/substitution line II-3-1 (2n = 20'' W + 1P" + 2P") with the commercial recurrent parent cv. Jimai 22. Four continuous years of agronomic trait investigation in the genetic populations suggested that the introduction of A. cristatum chromosome 1P into wheat can significantly improve wheat plant architecture by reducing the plant height, leaf length and leaf width. A. cristatum chromosome arm 1PS reduced the plant height and leaf length of wheat, whereas introducing A. cristatum chromosome arm 1PL reduced the plant height, leaf length and leaf width. Altogether, our results demonstrated that A. cristatum chromosome 1P carries the dominant genes for small leaves and a dwarf habit for the enhancement of plant architecture in wheat. This study highlights wild relative donors as new gene resources for improving wheat plant architecture for dense planting.


Assuntos
Agropyron , Agropyron/genética , Cromossomos de Plantas/genética , Hibridização Genética , Melhoramento Vegetal , Folhas de Planta/genética , Translocação Genética , Triticum/genética
9.
Theor Appl Genet ; 135(8): 2861-2873, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35819492

RESUMO

KEY MESSAGE: The powdery mildew resistance locus was mapped to A. cristatum chromosome 6PL bin (0.27-0.51) and agronomic traits evaluation indicated that this locus has potential breeding application value. Agropyron cristatum (2n = 4x = 28, PPPP) is a wild relative of wheat with an abundance of biotic and abiotic stress resistance genes and is considered one of the best exogenous donor relatives for wheat breeding. A number of wheat-A. cristatum derived lines have been generated, including addition lines, translocation lines and deletion lines. In this study, the 6P disomic addition line 4844-12 (2n = 2x = 44) was confirmed to have genetic effects on powdery mildew resistance. Four 6P deletion lines (del16a, del19b, del21 and del27) and two translocation lines (WAT638a and WAT638b), derived from radiation treatment of 4844-12, were used to further assess the 6P powdery mildew resistance locus by powdery mildew resistance assessment, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH) and 6P specific sequence-tagged-site (STS) markers. Collectively, the locus harboring the powdery mildew resistance gene was genetically mapped to a 6PL bin (0.27-0.51). The genetic effects of this chromosome segment on resistance to powdery mildew were further confirmed by del16a and del27 BC3F2 lines. Comprehensive evaluation of agronomic traits revealed that the powdery mildew resistance locus of 6PL (0.27-0.51) has potential application value in wheat breeding. A total of 22 resistant genes were annotated and 3 specific gene markers were developed for detecting chromatin of the resistant region based on genome re-sequencing. In summary, this study could broaden the powdery mildew resistance gene pool for wheat genetic improvements.


Assuntos
Agropyron , Agropyron/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/genética , Translocação Genética , Triticum/genética
10.
Mol Breed ; 42(3): 14, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37309409

RESUMO

Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a relative of wheat, carries desirable genes associated with high yield, disease resistance, and stress resistance, which is an important resource for wheat genetic improvement. The long arm of A. cristatum chromosome 2P carries favorable genes conferring powdery mildew and leaf rust resistance, and two wheat-A. cristatum 2P translocation lines, 2PT3 and 2PT5, with a large segment of 2P chromatin were obtained. In this study, 2PT3 and 2PT5 translocation lines with powdery mildew and leaf rust resistance genes were used to induce translocations of different chromosomal sizes via ionizing radiation. According to cytological characterization, 10 of those plants were new wheat-A. cristatum 2P small-chromosome segment translocation lines with reduced 2P chromatin, and 6 plants represented introgression lines without visible 2P chromosomal fragments. Moreover, four lines were resistant to both powdery mildew and leaf rust, while two lines were resistant only to leaf rust.

11.
Mol Breed ; 42(8): 48, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37313513

RESUMO

Fluorescence in situ hybridization (FISH) is a basic tool that is widely used in cytogenetic research. The detection efficiency of conventional FISH is limited due to its time-consuming nature. Oligonucleotide (oligo) probes with fluorescent labels have been applied in non-denaturing FISH (ND-FISH) assays, which greatly streamline experimental processes and save costs and time. Agropyron cristatum, which contains one basic genome, "P," is a vital wild relative for wheat improvement. However, oligo probes for detecting P-genome chromosomes based on ND-FISH assays have not been reported. In this study, according to the distribution of transposable elements (TEs) in Triticeae genomes, 94 oligo probes were designed based on three types of A. cristatum sequences. ND-FISH validation showed that 12 single oligo probes generated a stable and obvious hybridization signal on whole P chromosomes in the wheat background. To improve signal intensity, mixed probes (Oligo-pAc) were prepared by using the 12 successful probes and validated in the diploid accession A. cristatum Z1842, a small segmental translocation line and six allopolyploid wild relatives containing the P genome. The signals of Oligo-pAc covered the entire chromosomes of A. cristatum and were more intense than those of single probes. The results indicate that Oligo-pAc can replace conventional genomic in situ hybridization (GISH) probes to identify P chromosomes or segments in non-P-genome backgrounds. Finally, we provide a rapid and efficient method specifically for detecting P chromosomes in wheat backgrounds by combining the Oligo-pAc probe with the Oligo-pSc119.2-1 and Oligo-pTa535-1 probes, which can replace conventional sequential GISH/FISH assays. Altogether, we developed a set of oligo probes based on the ND-FISH assays to identify P-genome chromosomes, which can promote utilization of A. cristatum in wheat improvement programs.

12.
Environ Res ; 213: 113747, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753379

RESUMO

Predicting the groundwater level of karst aquifers in North China Coalfield is essential for early warning of mine water hazards and regional water resources management. However, the dynamic changes of strata structure and hydrogeological parameters driven by coal mining activity cause challenges to the process-oriented groundwater model. In order to achieve accurate prediction of groundwater level in large mining areas, this study was the first to use the data-driven Nonlinear Autoregressive with External Input (NARX) model to predict the groundwater level of six karst aquifer observation wells in Pingshuo Mining Area. Three variable input scenarios were set up, solely considering meteorological factors, anthropogenic disturbance factors, and considering both meteorological and anthropogenic disturbance factors. The novel partial mutual information (PMI) screening algorithm was adopted to determine optimized input variables in each scenario. The input and feedback delay coefficients of NARX model were determined by using Seasonal-trend Decomposition Procedure Based on Loess (STL) algorithm and auto- and cross-correlation functions. The results showed that PMI algorithm can effectively screen out the optimal input variables for predicting groundwater level, the NSE coefficients of the PMI-NARX models under the three scenarios were 38.81%, 4.26% and 41.46% higher than those of the corresponding control experiments, respectively. In addition, the prediction performance of the PMI-NARX built on the basis of meteorological factors is poor (NSE <0.63). However, in scenarios which solely use anthropogenic disturbance factors and both use meteorological and anthropogenic disturbance factors, the PMI-NARX coupling models exhibit good prediction performance (NSE and R2 are all greater than 0.8). Especially under solely considering anthropogenic disturbance factors scenario, the model still exhibited good prediction accuracy with a negligible number of input variables. The results can provide technical and theoretical support for the prediction of groundwater level in other mining areas.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Monitoramento Ambiental/métodos , Previsões , Água Subterrânea/química , Mineração , Recursos Hídricos
13.
Plant Dis ; 106(8): 2201-2210, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35077235

RESUMO

Plant viruses transmitted by the soilborne plasmodiophorid Polymyxa graminis constantly threaten global production of cereal crops. Although the yellow mosaic virus disease of barley has been known to be present for a long time in China, the understanding of the diversity of the viral pathogens and their interactions with host resistance remains limited. In this study, we conducted a nationwide survey of P. graminis and the barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) it transmits, followed by genomic and pathogenic diversity analyses of both viruses. BaYMV and BaMMV were found exclusively in the region downstream of the Yangtze River, despite the national distribution of its transmission vector P. graminis. Analysis of the genomic variations of BaYMV and BaMMV revealed an elevated rate of nonsynonymous substitutions in the viral genome-linked protein (VPg), in which most substitutions were located in its interaction surface with the host eukaryotic translation initiation factor 4E (eIF4E). VPg sequence diversity was associated with the divergence in virus pathogenicity that was identified through multiple field trials. The majority of the resistance genes, including the widely applied rym4 and rym5 (alleles of eIF4E), as well as the combination of rym1/11 and rym5, are not sufficient to protect cultivated barley against viruses in China. Collectively, these results provide insights into virulence specificity and interaction mode with host resistance in cultivated barley, which has significant implications in breeding for the broad-spectrum resistance barley varieties.


Assuntos
Hordeum , Fator de Iniciação 4E em Eucariotos/genética , Genômica , Hordeum/genética , Melhoramento Vegetal , Doenças das Plantas , Potyviridae
14.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806373

RESUMO

Wheat leaf rust (caused by Puccinia triticina Erikss.) is among the major diseases of common wheat. The lack of resistance genes to leaf rust has limited the development of wheat cultivars. Wheat-Agropyron cristatum (A. cristatum) 2P addition line II-9-3 has been shown to provide broad-spectrum immunity to leaf rust. To identify the specific A. cristatum resistance genes and related regulatory pathways in II-9-3, we conducted a comparative transcriptome analysis of inoculated and uninoculated leaves of the resistant addition line II-9-3 and the susceptible cultivar Fukuhokomugi (Fukuho). The results showed that there were 66 A. cristatum differentially expressed genes (DEGs) and 1389 wheat DEGs in II-9-3 during P. triticina infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and gene set enrichment analysis (GSEA) revealed that the DEGs of II-9-3 were associated with plant-pathogen interaction, MAPK signaling pathway-plant, plant hormone signal transduction, glutathione metabolism, and phenylpropanoid biosynthesis. Furthermore, many defense-related A. cristatum genes, such as two NLR genes, seven receptor kinase-encoding genes, and four transcription factor-encoding genes, were identified. Our results indicated that the key step of resistance to leaf rust involves, firstly, the gene expression of chromosome 2P upstream of the immune pathway and, secondly, the effect of chromosome 2P on the co-expression of wheat genes in II-9-3. The disease resistance regulatory pathways and related genes in the addition line II-9-3 thus could play a critical role in the effective utilization of innovative resources for leaf rust resistance in wheat breeding.


Assuntos
Agropyron , Basidiomycota , Agropyron/genética , Basidiomycota/genética , Cromossomos de Plantas , Resistência à Doença/genética , Perfilação da Expressão Gênica , Melhoramento Vegetal , Doenças das Plantas/genética , Transcriptoma , Triticum/genética
15.
J Environ Manage ; 324: 116379, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202037

RESUMO

Ground-level ozone (O3) has negative effects on agricultural crops. Maize is an important grain crop in China. The North China Plain (NCP) serves as the major crops' production area of China and experiences severe ozone pollution. Using the ground-level ozone simulated by an atmospheric chemistry transport model (WRF-Chem), we quantified the yield reduction and economic losses of maize during 2015-2018 over NCP based on exposure-response AOT40 (accumulation of hourly O3 concentration exceed 40 ppb) and flux-response POD6 (phytotoxic dose of ozone over 6 nmol m-2 s-1). Results showed that the ozone concentration, AOT40, and POD6 clearly increased from 2015 to 2018 in growing season of maize over NCP. The four-year annual mean ozone concentration, AOT40, and POD6 were 0.055 ppm, 18.02 ppm h, and 5.02 mmol m-2, respectively. At county level, the relative loss of maize yield (MRYL) based on AOT40 and POD6 had clearly spatio-temporal differences in NCP. The average MRYLs of AOT40 and of POD6 from 2015 to 2018 were 10.4% and 21.4%, respectively, and these reductions were associated with 2399 million and 5637 million US dollars, respectively. This study suggests that surface ozone increased the yield losses of maize, and indicates that further reductions in ozone concentrations can enhance the food security in China.


Assuntos
Poluentes Atmosféricos , Ozônio , Ozônio/análise , Zea mays , Poluentes Atmosféricos/análise , Produtos Agrícolas/fisiologia , China
16.
Theor Appl Genet ; 134(11): 3759-3772, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34355268

RESUMO

KEY MESSAGE: An enhanced grain weight locus from Agropyron cristatum chromosome 7P was verified in two wheat backgrounds, localized to the 7PS1-2 region. Novel translocation lines with this locus were evaluated. Agropyron cristatum is a wild relative of wheat that harbours elite genes for wheat improvement. The wheat-A. cristatum 7P disomic addition line II-5-1 exhibits high grain weight. Here, to dissect the genetic basis of grain weight contributed by A. cristatum chromosome 7P in wheat backgrounds, four segregated populations of the addition line were developed and evaluated in two wheat backgrounds. The results showed that A. cristatum chromosome 7P can stably and significantly increase the grain weight by approximately 2 g, mainly by increasing grain length at different grain weight levels of the wheat background. The locus for increased grain weight from chromosome 7P shows dominant inheritance independent of the wheat background. Moreover, two deletion lines and 23 translocation lines were identified by cytological methods and molecular markers, and an enlarged chromosome 7P bin map was constructed with 158 STS markers and 40 bin intervals. With the genetic populations of these deletion and translocation lines, the genetic locus of increased grain weight was narrowed down to bin 7PS1-2. Two translocation lines (7PT-A18 and 7PT-B4) with smaller 7P chromosomal segments exhibited an increase in grain weight, grain length and grain width simultaneously. These translocation lines carrying the 7PS1-2 chromosomal fragment will be valuable genetic resources for wheat grain weight improvement. Collectively, this study uncovers the grain weight locus from chromosome 7P and provides novel pre-breeding lines with enhanced grain weight.


Assuntos
Agropyron/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Sementes/crescimento & desenvolvimento , Triticum/genética , Grão Comestível/genética , Melhoramento Vegetal , Translocação Genética
17.
Mol Breed ; 41(10): 59, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37309319

RESUMO

Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP), one of the most important wild relatives of wheat, harbors many desirable genes for wheat genetic improvement. Development of wheat-A. cristatum translocation lines with superior agronomic traits facilitates wheat genetic improvement. In this study, 5106-DS was identified to be a wheat-A. cristatum 6P (6D) disomic substitution line using cytogenetic identification and molecular markers analysis, which displayed higher thousand-grain weight than its wheat parent Triticum aestivum cv. Fukuhokomugi (2n = 6x = 42, AABBDD). Analysis of its backcross populations indicated that there might be genes conferring increased grain weight and width on the chromosome 6P of 5106-DS. In the backcross population, we found three plants as Robertsonian translocation lines, created by chromosome centric breakage-fusion. Among them, there are one T6DS·6PL and two T6PS·6DL Robertsonian translocation lines. Additionally, the centromeres of these three translocation lines were determined to be fused centromeres of 6D and 6P using the probes pAcCR1 and pCCS1. The development of Robertsonian translocation lines would promote the utilization of A. cristatum chromosome 6P in wheat improvement. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01251-y.

18.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681868

RESUMO

Agropyron cristatum (2n = 4x = 28, PPPP) is an important wild relative of common wheat (Triticum aestivum L., 2n = 6x = 42). A previous report showed that the wheat-A. cristatum 6P translocation line WAT655 carrying A. cristatum 6PS (0.81-1.00) exhibited high resistance to prevalent physiological races of stripe rust (CYR32 and CYR33). In this study, three disease resistance-related transcripts, which were mapped to A. cristatum 6PS (0.81-1.00) through the analysis of specific molecular markers, were acquired from among A. cristatum full-length transcripts. The BC5F2 and BC5F2:3 genetic populations of the translocation line WAT655 were analyzed by using three disease resistance-related gene markers, A. cristatum P genome-specific markers, and fluorescence in situ hybridization (FISH). The results revealed that the introgression between A. cristatum P genome and wheat genome was observed in progenies of the genetic populations of the translocation line WAT655 and the physical positions of the three genes were considerably adjacent on A. cristatum 6PS (0.81-1.00) according to the FISH results. Additionally, kompetitive allele-specific PCR (KASP) markers of the three genes were developed to detect and acquire 24 breeding lines selected from the progenies of the distant hybridization of wheat and A. cristatum, which showed resistance to physiological races of stripe rust (CYR32 and CYR33) and other desirable agronomic traits according to the field investigation. In conclusion, this study not only provides new insights into the introgression between A. cristatum P genome and wheat genome but also provides the desirable germplasms for breeding practice.


Assuntos
Agropyron/genética , Resistência à Doença/genética , Introgressão Genética/genética , Genoma de Planta , Triticum/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Análise Citogenética , Marcadores Genéticos , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Puccinia/patogenicidade
19.
BMC Genomics ; 20(1): 1025, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881839

RESUMO

BACKGROUND: Agropyron cristatum (L.) Gaertn. (2n = 4x = 28; genomes PPPP) is a wild relative of common wheat (Triticum aestivum L.) and provides many desirable genetic resources for wheat improvement. However, there is still a lack of reference genome and transcriptome information for A. cristatum, which severely impedes functional and molecular breeding studies. RESULTS: Single-molecule long-read sequencing technology from Pacific Biosciences (PacBio) was used to sequence full-length cDNA from a mixture of leaves, roots, stems and caryopses and constructed the first full-length transcriptome dataset of A. cristatum, which comprised 44,372 transcripts. As expected, the PacBio transcripts were generally longer and more complete than the transcripts assembled via the Illumina sequencing platform in previous studies. By analyzing RNA-Seq data, we identified tissue-enriched transcripts and assessed their GO term enrichment; the results indicated that tissue-enriched transcripts were enriched for particular molecular functions that varied by tissue. We identified 3398 novel and 1352 A. cristatum-specific transcripts compared with the wheat gene model set. To better apply this A. cristatum transcriptome, the A. cristatum transcripts were integrated with the wheat genome as a reference sequence to try to identify candidate A. cristatum transcripts associated with thousand-grain weight in a wheat-A. cristatum translocation line, Pubing 3035. CONCLUSIONS: Full-length transcriptome sequences were used in our study. The present study not only provides comprehensive transcriptomic insights and information for A. cristatum but also proposes a new method for exploring the functional genes of wheat relatives under a wheat genetic background. The sequence data have been deposited in the NCBI under BioProject accession number PRJNA534411.


Assuntos
Agropyron/genética , Grão Comestível/genética , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Característica Quantitativa Herdável , Transcriptoma , Mapeamento Cromossômico , Cromossomos de Plantas , Biologia Computacional/métodos , Bases de Dados Genéticas , Anotação de Sequência Molecular
20.
Theor Appl Genet ; 132(10): 2815-2827, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31309244

RESUMO

KEY MESSAGE: An enhanced-grain number per spike locus from Agropyron cristatum 6PL was mapped onto 6PL (0.27-0.51) via deletion mapping, and its effect was further verified by evaluating a newly created translocation line. Agropyron cristatum (2n = 4x = 28, PPPP) is an important wild relative of common wheat and carries many desirable yield-related traits. The wheat-A. cristatum 6P disomic addition line 4844-12 exhibited high grain number per spike (GNS), high spikelet number per spike (SNS), and high kernel number per spikelet (KNS). In this study, five A. cristatum 6P deletion lines, five wheat-A. cristatum 6P translocation lines, and genetic populations of these lines were used to map the enhanced-GNS locus from A. cristatum chromosome 6P, which were genotyped via genomic in situ hybridization, fluorescence in situ hybridization, or molecular markers. According to the evaluation of the agronomic traits in four growing seasons (2014-2015, 2015-2016, 2016-2017, and 2017-2018), we found that the deletion lines and the translocation lines carrying the long arm of A. cristatum chromosome 6P (6PL) exhibited high GNS, SNS, and KNS, and the enhanced-GNS locus was ultimately mapped onto 6PL (0.27-0.51). To verify the localization results, we created a new translocation line WAT650a (T5BL•5BS-6PL) that carried 6PL (0.35-0.42); this line exhibited higher GNS and SNS than the recipient parent Fukuhokomugi (Fukuho). Collectively, the enhanced-GNS locus of A. cristatum 6PL can be important for improving yield traits in common wheat; the translocation lines with the enhanced-GNS locus can serve as novel and valuable germplasm resources for wheat breeding.


Assuntos
Agropyron/genética , Cromossomos de Plantas/genética , Grão Comestível/crescimento & desenvolvimento , Locos de Características Quantitativas , Deleção de Sequência , Translocação Genética , Triticum/genética , Agropyron/crescimento & desenvolvimento , Mapeamento Cromossômico , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Marcadores Genéticos , Genótipo , Hibridização Genética , Triticum/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA