Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 40(12): 6537-6549, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483278

RESUMO

The sintering of hydrate aggregates on the pipe wall is a major form of hydrate deposition. Understanding the sintering behavior of hydrates on the wall is crucial for promoting hydrate safety management and preventing pipeline blockage. However, limited research currently exists on this topic. In this study, the cohesive force strength of hydrate particles on the wall surface under different conditions was directly measured using a high-pressure micromechanical force device (HP-MMF). Subsequently, the effects of subcooling and glycine on the cohesive force were investigated. The results indicate that the cohesive force is influenced by different growth states during the process of free water on the wall surface gradually growing into hydrate. Three states with larger measured values during the growth process were selected for research. Observation showed that increased subcooling strengthened sintering by accelerating the growth rate of the hydrate film, resulting in a significant increase in cohesive force. The role of glycine in the methane hydrate system was then evaluated. Glycine was found to reduce the degree of sintering by reducing the growth rate of the hydrate film, thereby decreasing the cohesive force. The optimal concentration in the system was determined to be 0.25 wt %. Moreover, compared with low subcooling (1 °C), glycine had a better effect at high subcooling (5 °C). At 5 °C subcooling and the optimal concentration, the cohesive force in the wall droplet state decreases from 677.38 to 489.02 mN/m, the cohesive force at the low-saturation state decreases from 951.79 to 543.32 mN/m, and the cohesive force at the high-saturation state decreases from 1194.95 to 641.76 mN/m. These findings contribute to a better understanding of the cohesive force behavior of gas hydrate on the inner wall of the pipeline and provide basic data for reducing the risk of hydrate blockage.

2.
Forensic Sci Int Genet ; 66: 102904, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307769

RESUMO

The microbial communities may undergo a meaningful successional change during the progress of decay and decomposition that could aid in determining the post-mortem interval (PMI). However, there are still challenges to applying microbiome-based evidence in law enforcement practice. In this study, we attempted to investigate the principles governing microbial community succession during decomposition of rat and human corpse, and explore their potential use for PMI of human cadavers. A controlled experiment was conducted to characterize temporal changes in microbial communities associated with rat corpses as they decomposed for 30 days. Obvious differences of microbial community structures were observed among different stages of decomposition, especially between decomposition of 0-7d and 9-30d. Thus, a two-layer model for PMI prediction was developed based on the succession of bacteria by combining classification and regression models using machine learning algorithms. Our results achieved 90.48% accuracy for discriminating groups of PMI 0-7d and 9-30d, and yielded a mean absolute error of 0.580d within 7d decomposition and 3.165d within 9-30d decomposition. Furthermore, samples from human cadavers were collected to gain the common succession of microbial community between rats and humans. Based on the 44 shared genera of rats and humans, a two-layer model of PMI was rebuilt to be applied for PMI prediction of human cadavers. Accurate estimates indicated a reproducible succession of gut microbes across rats and humans. Together these results suggest that microbial succession was predictable and can be developed into a forensic tool for estimating PMI.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Ratos , Animais , Mudanças Depois da Morte , Cadáver , Aprendizado de Máquina
3.
RSC Adv ; 9(56): 32873-32888, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35529764

RESUMO

The formation and accumulation of hydrates in high pressure oil and gas pipelines bring great risks to field development and deep-water transportation. In this paper, a high pressure flow loop equipped with visual window was used to study the growth process of hydrates in a pipe flow system and slurry flow characteristics. Deionized water, industrial white oil and CO2 were selected as the experiment medium. A series of experiments with different initial pressures (2.5-3 MPa), liquid loads (7-9 L), flow rates (25-35 kg min-1) and water cuts (60-100%) were designed and carried out. Specifically, hydrate formation and slurry flow characteristics in two different systems, pure water and oil-water emulsion system, were compared. Both of the systems experienced an induction stage, slurry flow stage and followed by a plugging stage. Although hydrate growth gradually ceased in the slurry flow stage, plugging still occurred due to the continuous agglomeration of hydrates. Visual observation showed that there were obvious stratification of the oil-water emulsion systems at the later time of slurry flow stage, which directly resulted in pipe blockage. The hydrate induction time of the flow systems gradually decreased with the increasing initial pressure, initial flow rate and water content. And the induction time tended to decrease first and then slowly increase with the increasing liquid loading. For emulsion systems, the apparent viscosity and friction coefficient of the hydrate slurry increased with the increasing water content, indicating that there were higher plugging risks compared to the pure water systems. Moreover, the results of sensitivity analysis showed that the water content was the main factor affecting the hydrate induction time, followed by the influence of liquid carrying capacity and flow rate, and the initial pressure had the least influence on the induction time. Conclusions obtained in this paper can provide some reference not only for the prevention and management of hydrates in pipelines, but also for the application of CO2 hydrate as a refrigerant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA