Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsy Behav ; 145: 109290, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37406559

RESUMO

OBJECTIVE: To study the effects of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) on epileptic seizures, anxiety, and depression in patients with epilepsy. METHODS: Based on the inclusion and exclusion criteria, an ambispective cohort study was hereby conducted on patients with epilepsy infected with SARS-CoV-2 who visited the outpatient and ward of the Department of Neurology of Xinyang Central Hospital from December 2022 (when the domestic epidemic prevention and control policy was lifted) to February 2023. A face-to-face questionnaire survey involving factors including basic information, vaccination with inactivated COVID-19 vaccines, number of seizures within 2 months before and after SARS-CoV-2 infection, and scores of anxiety and depression was carried out. RESULTS: A total of 107 patients with epilepsy satisfying the inclusion and exclusion criteria completed the follow-up after 2 months. It was found that enrolled patients maintained the original dose of antiepileptic drugs, but the frequency of seizures after COVID-19 infection could not be controlled. After infection with SARS-CoV-2, the frequency of seizures in patients with epilepsy in 2 months increased compared with that before infection (P < 0.05). Meanwhile, compared with the vaccinated group, the high-frequency seizure rate of epilepsy in the unvaccinated group was higher. (P < 0.05), and the anxiety and depression scores of patients with epilepsy were worse than those before they were infected (P < 0.05). CONCLUSION: Being infected with SARS-CoV-2 can increase the number of seizures and aggravate the degree of anxiety and depression in patients with epilepsy. The inactivated vaccine is protective, and the inactivated SARS-CoV-2 vaccine can reduce the rate of high-frequency seizures.


Assuntos
COVID-19 , Epilepsia , Humanos , Vacinas contra COVID-19 , Estudos de Coortes , Depressão/etiologia , COVID-19/complicações , SARS-CoV-2 , Ansiedade/etiologia , Epilepsia/complicações , Epilepsia/epidemiologia , Convulsões/complicações , Pacientes Ambulatoriais
2.
Opt Express ; 28(19): 27808-27822, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988066

RESUMO

Since the fundamental building blocks of life are built of chiral amino acids and chiral sugar, enantiomer separation is of great interest in plenty of chemical syntheses. Light-chiral material interaction leads to a unique chiral optical force, which possesses opposite directions for specimens with different handedness. However, usually the enantioselective sorting is challenging in optical tweezers due to the dominating achiral force. In this work, we propose an optical technique to sort chiral specimens by use of a transverse optical needle field with a transverse spin (TONFTS), which is constructed through reversing the radiation patterns from an array of paired orthogonal electric dipoles located in the focal plane of a 4Pi microscopy and experimentally generated with a home-built vectorial optical field generator. It is demonstrated that the transverse component of the photonic spin gives rise to the chiral optical force perpendicular to the direction of the light's propagation, while the transverse achiral gradient force would be dramatically diminished by the uniform intensity profile of the optical needle field. Consequently, chiral nanoparticles with different handedness would be laterally sorted by the TONFTS and trapped at different locations along the optical needle field, providing a feasible route toward all-optical enantiopure chemical syntheses and enantiomer separations in pharmaceuticals.

3.
J Opt Soc Am A Opt Image Sci Vis ; 35(6): 953-958, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877339

RESUMO

Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in plenty of applications. In this work, we propose and experimentally demonstrate the generation of a second-order full Poincaré (FP) beam and its application in two-dimensional (2D) flattop beam shaping with spatially variant polarization under a high numerical aperture focusing condition. In addition, the force mechanism of the focal field with 2D flattop beam profile is numerically studied, demonstrating the feasibility to trap a dielectric Rayleigh particle in three-dimensional space. The results show that the additional degree of freedom provided by the FP beam allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force exerted on a dielectric Rayleigh particle. The findings reported in the work may find useful applications in laser micromachining, optical trapping, and optical assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA