Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; 14(48): e1803409, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30334376

RESUMO

As a promising energy-storage device, rechargeable Zn-air batteries have attracted considerable interests. Herein, a bifunctional oxygen electrode film prepared by adhering NiCo2 O4 nanosheets to a nitrogen and oxygen dual-doped carbon nanotubes film in a large scale is reported. The resulting self-supporting film electrode is multifunctional, which integrates a porous conducting structure for air diffusion and charge transfer, high-performance catalysts for oxygen reduction and evolution, and novel structural flexibility. The composite film demonstrates excellent oxygen reduction/evolution reaction catalytic activities with low Tafel slopes (50 mV dec-1 for oxygen reduction reaction; 92 mV dec-1 for oxygen evolution reaction). Without any additional current collector, gas diffusion layer, or binder, the obtained bifunctional film performs as an "all-in-one" air electrode in a Zn-air battery. A 50-cm-long cable-shaped Zn-air battery based on such a film air electrode exhibits high operating potentials (≈1.2 V at 0.25 mA cm-2 ), low charging-discharging overpotentials (≈0.7 V), and stable cycling performance. Moreover, the flexible cable Zn-air batteries show excellent stability under different deformation conditions. The proposed concept of constructing scalable, all-in-one, freestanding, and flexible air electrodes would pave the way to develop next-generation wearable and portable energy-storage devices.

2.
Small ; 14(38): e1801883, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30152590

RESUMO

Artificial muscles are reported in which reduced graphene oxide (rGO) is trapped in the helical corridors of a carbon nanotube (CNT) yarn. When electrochemically driven in aqueous electrolytes, these coiled CNT/rGO yarn muscles can contract by 8.1%, which is over six times that of the previous results for CNT yarn muscles driven in an inorganic electrolyte (1.3%). They can contract to provide a final stress of over 14 MPa, which is about 40 times that of natural muscles. The hybrid yarn muscle shows a unique catch state, in which 95% of the contraction is retained for 1000 s following charging and subsequent disconnection from the power supply. Hence, they are unlike thermal muscles and natural muscles, which need to consume energy to maintain contraction. Additionally, these muscles can be reversibly cycled while lifting heavy loads.

3.
Nanoscale ; 10(17): 8180-8186, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29676416

RESUMO

Artificial yarn/fiber muscles have recently attracted considerable interest for various applications. These muscles can provide large-stroke tensile and torsional actuations, resulting from inserted twists. However, tensional tethering of twisted muscles is generally needed to avoid muscle snarling and untwisting. In this paper a carbon nanotube (CNT) yarn muscle that is tethering-free and twist-stable is reported. The yarn muscle is prepared by allowing the self-plying of a coiled CNT yarn. When driven by acetone adsorption, this muscle shows decoupled actuations, which provide fast and reversible ∼13.3% contraction strain against a constant stress corresponding to ∼38 000 times the muscle weight but almost zero torsional strokes. The cycling test shows that the self-plied muscle has very good structural stability and actuation reversibility. Applied joule heating can help increase the desorption of acetone and increase the operation frequency of the self-plied muscle. Furthermore, by controlling the coupling between the joule heating and acetone adsorption/desorption, tensile actuations from negative to positive have been achieved. This twist-stable feature could considerably facilitate the practical applications of such muscle.


Assuntos
Órgãos Artificiais , Músculos , Nanotubos de Carbono , Adsorção , Solventes
4.
Nanoscale ; 10(8): 4077-4084, 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29431840

RESUMO

Hybrid smart actuators fabricated using composites of carbon fibers and shape memory polymers have been extensively studied in recent years. However, relatively slow shape recovery has combined with the reset of shape deformation during cycles to restrict their practical use. An electrothermally reversible actuator based on carbon nanotube (CNT) composite yarn containing CNT fiber and thermoplastic polyurethane (TPU) resin with excellent shape memory was investigated in this paper. The combination of CNT yarn and TPU resin considerably amplified the contraction and stability. Large tensile stroke was obtained within 5 s (∼13.8%) while lifting a load that was ∼1905 times as heavy as the actuator. The generated contractive stress reached more than 33 MPa (corresponding to 120 g of the load) at a weight-to-yarn mass ratio of 28 400, which was about 30 times more than the shape recovery stress of shape memory polymer. In terms of the stability study, the process of annealing and contraction training was introduced. In addition, the quantitative relationship between temperature and contraction was also rigorously explored, which facilitated a more accurate and controllable contractile stroke. Great potential applications ranging from soft robots, wearable intelligent devices, and biomimetic devices to self-deployable structures in the aerospace field are likely to benefit from the advantages of low density, fast response without hysteresis, super flexible structure, as well as stitchability and large-scale production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA