Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.216
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(4): 864-876.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36750095

RESUMO

A fundamental strategy of eukaryotic antiviral immunity involves the cGAS enzyme, which synthesizes 2',3'-cGAMP and activates the effector STING. Diverse bacteria contain cGAS-like enzymes that produce cyclic oligonucleotides and induce anti-phage activity, known as CBASS. However, this activity has only been demonstrated through heterologous expression. Whether bacteria harboring CBASS antagonize and co-evolve with phages is unknown. Here, we identified an endogenous cGAS-like enzyme in Pseudomonas aeruginosa that generates 3',3'-cGAMP during phage infection, signals to a phospholipase effector, and limits phage replication. In response, phages express an anti-CBASS protein ("Acb2") that forms a hexamer with three 3',3'-cGAMP molecules and reduces phospholipase activity. Acb2 also binds to molecules produced by other bacterial cGAS-like enzymes (3',3'-cUU/UA/UG/AA) and mammalian cGAS (2',3'-cGAMP), suggesting broad inhibition of cGAS-based immunity. Upon Acb2 deletion, CBASS blocks lytic phage replication and lysogenic induction, but rare phages evade CBASS through major capsid gene mutations. Altogether, we demonstrate endogenous CBASS anti-phage function and strategies of CBASS inhibition and evasion.


Assuntos
Bactérias , Bacteriófagos , Animais , Bactérias/imunologia , Bactérias/virologia , Bacteriófagos/fisiologia , Imunidade , Nucleotidiltransferases/metabolismo
2.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814014

RESUMO

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Assuntos
Variação Genética/genética , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/genética , Animais , Linhagem Celular , Vetores de Doenças , Especificidade de Hospedeiro/genética
3.
Cell ; 178(1): 107-121.e18, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31251911

RESUMO

Increasing evidence suggests that transcriptional control and chromatin activities at large involve regulatory RNAs, which likely enlist specific RNA-binding proteins (RBPs). Although multiple RBPs have been implicated in transcription control, it has remained unclear how extensively RBPs directly act on chromatin. We embarked on a large-scale RBP ChIP-seq analysis, revealing widespread RBP presence in active chromatin regions in the human genome. Like transcription factors (TFs), RBPs also show strong preference for hotspots in the genome, particularly gene promoters, where their association is frequently linked to transcriptional output. Unsupervised clustering reveals extensive co-association between TFs and RBPs, as exemplified by YY1, a known RNA-dependent TF, and RBM25, an RBP involved in splicing regulation. Remarkably, RBM25 depletion attenuates all YY1-dependent activities, including chromatin binding, DNA looping, and transcription. We propose that various RBPs may enhance network interaction through harnessing regulatory RNAs to control transcription.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Transcrição Gênica/genética , Fator de Transcrição YY1/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica , Genoma Humano/genética , Células Hep G2 , Humanos , Células K562 , Proteínas Nucleares , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , RNA-Seq , Transcriptoma , Fator de Transcrição YY1/genética
4.
Cell ; 179(7): 1566-1581.e16, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31835033

RESUMO

Spermiogenesis is a highly orchestrated developmental process during which chromatin condensation decouples transcription from translation. Spermiogenic mRNAs are transcribed earlier and stored in a translationally inert state until needed for translation; however, it remains largely unclear how such repressed mRNAs become activated during spermiogenesis. We previously reported that the MIWI/piRNA machinery is responsible for mRNA elimination during late spermiogenesis in preparation for spermatozoa production. Here we unexpectedly discover that the same machinery is also responsible for activating translation of a subset of spermiogenic mRNAs to coordinate with morphological transformation into spermatozoa. Such action requires specific base-pairing interactions of piRNAs with target mRNAs in their 3' UTRs, which activates translation through coupling with cis-acting AU-rich elements to nucleate the formation of a MIWI/piRNA/eIF3f/HuR super-complex in a developmental stage-specific manner. These findings reveal a critical role of the piRNA system in translation activation, which we show is functionally required for spermatid development.


Assuntos
Proteínas Argonautas/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Interferente Pequeno/metabolismo , Espermatogênese , Regiões 3' não Traduzidas , Animais , Proteínas Argonautas/genética , Pareamento de Bases , Células Cultivadas , Proteína Semelhante a ELAV 1/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética
5.
Mol Cell ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39127036

RESUMO

N6-methyladenosine (m6A) modification is deemed to be co-transcriptionally installed on pre-mRNAs, thereby influencing various downstream RNA metabolism events. However, the causal relationship between m6A modification and RNA processing is often unclear, resulting in premature or even misleading generalizations on the function of m6A modification. Here, we develop 4sU-coupled m6A-level and isoform-characterization sequencing (4sU-m6A-LAIC-seq) and 4sU-GLORI to quantify the m6A levels for both newly synthesized and steady-state RNAs at transcript and single-base-resolution levels, respectively, which enable dissecting the relationship between m6A modification and alternative RNA polyadenylation. Unexpectedly, our results show that many m6A addition events occur post-transcriptionally, especially on transcripts with high m6A levels. Importantly, we find higher m6A levels on shorter 3' UTR isoforms, which likely result from sequential polyadenylation of longer 3' UTR isoforms with prolonged nuclear dwelling time. Therefore, m6A modification can also take place post-transcriptionally to intimately couple with other key RNA metabolism processes to establish and dynamically regulate epi-transcriptomics in mammalian cells.

6.
Cell ; 165(7): 1789-1802, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27238021

RESUMO

Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization, and quantification of the activity of all neurons across the entire brain, which has not, to date, been achieved in the mammalian brain. We introduce a pipeline for high-speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Last, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available.


Assuntos
Comportamento Animal , Imuno-Histoquímica , Neuroimagem/métodos , Animais , Antipsicóticos/administração & dosagem , Encéfalo/metabolismo , Comportamento Exploratório , Genes Precoces , Haloperidol/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL
7.
Mol Cell ; 83(24): 4494-4508.e6, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38016476

RESUMO

In the cytoplasm, mRNAs are dynamically partitioned into translating and non-translating pools, but the mechanism for this regulation has largely remained elusive. Here, we report that m6A regulates mRNA partitioning between polysome and P-body where a pool of non-translating mRNAs resides. By quantifying the m6A level of polysomal and cytoplasmic mRNAs with m6A-LAIC-seq and m6A-LC-MS/MS in HeLa cells, we observed that polysome-associated mRNAs are hypo-m6A-methylated, whereas those enriched in P-body are hyper-m6A-methylated. Downregulation of the m6A writer METTL14 enhances translation by switching originally hyper-m6A-modified mRNAs from P-body to polysome. Conversely, by proteomic analysis, we identify a specific m6A reader IGF2BP3 enriched in P-body, and via knockdown and molecular tethering assays, we demonstrate that IGF2BP3 is both necessary and sufficient to switch target mRNAs from polysome to P-body. These findings suggest a model for the dynamic regulation of mRNA partitioning between the translating and non-translating pools in an m6A-dependent manner.


Assuntos
Adenina , Corpos de Processamento , Biossíntese de Proteínas , Proteínas de Ligação a RNA , Humanos , Cromatografia Líquida , Células HeLa , Polirribossomos/genética , Proteômica , RNA Mensageiro/genética , Espectrometria de Massas em Tandem , Adenina/análogos & derivados , Adenina/metabolismo , Proteínas de Ligação a RNA/metabolismo
8.
Nature ; 626(7998): 288-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326594

RESUMO

The microscopic origin of high-temperature superconductivity in cuprates remains unknown. It is widely believed that substantial progress could be achieved by better understanding of the pseudogap phase, a normal non-superconducting state of cuprates1,2. In particular, a central issue is whether the pseudogap could originate from strong pairing fluctuations3. Unitary Fermi gases4,5, in which the pseudogap-if it exists-necessarily arises from many-body pairing, offer ideal quantum simulators to address this question. Here we report the observation of a pair-fluctuation-driven pseudogap in homogeneous unitary Fermi gases of lithium-6 atoms, by precisely measuring the fermion spectral function through momentum-resolved microwave spectroscopy and without spurious effects from final-state interactions. The temperature dependence of the pairing gap, inverse pair lifetime and single-particle scattering rate are quantitatively determined by analysing the spectra. We find a large pseudogap above the superfluid transition temperature. The inverse pair lifetime exhibits a thermally activated exponential behaviour, uncovering the microscopic virtual pair breaking and recombination mechanism. The obtained large, temperature-independent single-particle scattering rate is comparable with that set by the Planckian limit6. Our findings quantitatively characterize the pseudogap in strongly interacting Fermi gases and they lend support for the role of preformed pairing as a precursor to superfluidity.

9.
Nat Immunol ; 18(8): 877-888, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650480

RESUMO

The origin and specification of human dendritic cells (DCs) have not been investigated at the clonal level. Through the use of clonal assays, combined with statistical computation, to quantify the yield of granulocytes, monocytes, lymphocytes and three subsets of DCs from single human CD34+ progenitor cells, we found that specification to the DC lineage occurred in parallel with specification of hematopoietic stem cells (HSCs) to the myeloid and lymphoid lineages. This started as a lineage bias defined by specific transcriptional programs that correlated with the combinatorial 'dose' of the transcription factors IRF8 and PU.1, which was transmitted to most progeny cells and was reinforced by upregulation of IRF8 expression driven by the hematopoietic cytokine FLT3L during cell division. We propose a model in which specification to the DC lineage is driven by parallel and inheritable transcriptional programs in HSCs and is reinforced over cell division by recursive interactions between transcriptional programs and extrinsic signals.


Assuntos
Linhagem da Célula , Células Dendríticas/citologia , Células-Tronco Hematopoéticas/citologia , Fatores Reguladores de Interferon/metabolismo , Leucopoese , Células-Tronco Multipotentes/citologia , Animais , Diferenciação Celular , Sangue Fetal , Citometria de Fluxo , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Análise de Componente Principal , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Regulação para Cima
10.
Cell ; 158(3): 607-19, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083871

RESUMO

MicroRNAs are well known to mediate translational repression and mRNA degradation in the cytoplasm. Various microRNAs have also been detected in membrane-compartmentalized organelles, but the functional significance has remained elusive. Here, we report that miR-1, a microRNA specifically induced during myogenesis, efficiently enters the mitochondria where it unexpectedly stimulates, rather than represses, the translation of specific mitochondrial genome-encoded transcripts. We show that this positive effect requires specific miR:mRNA base-pairing and Ago2, but not its functional partner GW182, which is excluded from the mitochondria. We provide evidence for the direct action of Ago2 in mitochondrial translation by crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq), functional rescue with mitochondria-targeted Ago2, and selective inhibition of the microRNA machinery in the cytoplasm. These findings unveil a positive function of microRNA in mitochondrial translation and suggest a highly coordinated myogenic program via miR-1-mediated translational stimulation in the mitochondria and repression in the cytoplasm.


Assuntos
Diferenciação Celular , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mioblastos/metabolismo , Miócitos Cardíacos/metabolismo , Biossíntese de Proteínas , Animais , Proteínas Argonautas/metabolismo , Linhagem Celular , Camundongos , Mioblastos/citologia , Miócitos Cardíacos/citologia
11.
Mol Cell ; 81(10): 2135-2147.e5, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33713597

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global pandemic. CoVs are known to generate negative subgenomes (subgenomic RNAs [sgRNAs]) through transcription-regulating sequence (TRS)-dependent template switching, but the global dynamic landscapes of coronaviral subgenomes and regulatory rules remain unclear. Here, using next-generation sequencing (NGS) short-read and Nanopore long-read poly(A) RNA sequencing in two cell types at multiple time points after infection with SARS-CoV-2, we identified hundreds of template switches and constructed the dynamic landscapes of SARS-CoV-2 subgenomes. Interestingly, template switching could occur in a bidirectional manner, with diverse SARS-CoV-2 subgenomes generated from successive template-switching events. The majority of template switches result from RNA-RNA interactions, including seed and compensatory modes, with terminal pairing status as a key determinant. Two TRS-independent template switch modes are also responsible for subgenome biogenesis. Our findings reveal the subgenome landscape of SARS-CoV-2 and its regulatory features, providing a molecular basis for understanding subgenome biogenesis and developing novel anti-viral strategies.


Assuntos
COVID-19 , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral , SARS-CoV-2 , Animais , COVID-19/genética , COVID-19/metabolismo , Células CACO-2 , Chlorocebus aethiops , Humanos , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Células Vero
12.
Cell ; 153(4): 855-68, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23663783

RESUMO

RNAP II is frequently paused near gene promoters in mammals, and its transition to productive elongation requires active recruitment of P-TEFb, a cyclin-dependent kinase for RNAP II and other key transcription elongation factors. A fraction of P-TEFb is sequestered in an inhibitory complex containing the 7SK noncoding RNA, but it has been unclear how P-TEFb is switched from the 7SK complex to RNAP II during transcription activation. We report that SRSF2 (also known as SC35, an SR-splicing factor) is part of the 7SK complex assembled at gene promoters and plays a direct role in transcription pause release. We demonstrate RNA-dependent, coordinated release of SRSF2 and P-TEFb from the 7SK complex and transcription activation via SRSF2 binding to promoter-associated nascent RNA. These findings reveal an unanticipated SR protein function, a role for promoter-proximal nascent RNA in gene activation, and an analogous mechanism to HIV Tat/TAR for activating cellular genes.


Assuntos
Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA não Traduzido/metabolismo , Ribonucleoproteínas/metabolismo , Ativação Transcricional , Animais , Elementos Facilitadores Genéticos , Técnicas de Silenciamento de Genes , Camundongos , Proteínas Nucleares/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Fatores de Processamento de Serina-Arginina , Elongação da Transcrição Genética , Iniciação da Transcrição Genética
13.
Cell ; 152(1-2): 82-96, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23313552

RESUMO

The induction of pluripotency or trans-differentiation of one cell type to another can be accomplished with cell-lineage-specific transcription factors. Here, we report that repression of a single RNA binding polypyrimidine-tract-binding (PTB) protein, which occurs during normal brain development via the action of miR-124, is sufficient to induce trans-differentiation of fibroblasts into functional neurons. Besides its traditional role in regulated splicing, we show that PTB has a previously undocumented function in the regulation of microRNA functions, suppressing or enhancing microRNA targeting by competitive binding on target mRNA or altering local RNA secondary structure. A key event during neuronal induction is the relief of PTB-mediated blockage of microRNA action on multiple components of the REST complex, thereby derepressing a large array of neuronal genes, including miR-124 and multiple neuronal-specific transcription factors, in nonneuronal cells. This converts a negative feedback loop to a positive one to elicit cellular reprogramming to the neuronal lineage.


Assuntos
Diferenciação Celular , Fibroblastos/citologia , MicroRNAs/genética , Neurônios/citologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Animais , Linhagem Celular , Linhagem da Célula , Regulação para Baixo , Humanos , Camundongos , MicroRNAs/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Splicing de RNA , Sinapses
14.
Nature ; 605(7908): 84-89, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508776

RESUMO

Enzymatic stereoselectivity has typically been unrivalled by most chemical catalysts, especially in the conversion of small substrates. According to the 'lock-and-key theory'1,2, enzymes have confined active sites to accommodate their specific reacting substrates, a feature that is typically absent from chemical catalysts. An interesting case in this context is the formation of cyanohydrins from ketones and HCN, as this reaction can be catalysed by various classes of catalysts, including biological, inorganic and organic ones3-7. We now report the development of broadly applicable confined organocatalysts for the highly enantioselective cyanosilylation of aromatic and aliphatic ketones, including the challenging 2-butanone. The selectivity (98:2 enantiomeric ratio (e.r.)) obtained towards its pharmaceutically relevant product is unmatched by any other catalyst class, including engineered biocatalysts. Our results indicate that confined chemical catalysts can be designed that are as selective as enzymes in converting small, unbiased substrates, while still providing a broad scope.


Assuntos
Cetonas , Catálise , Cetonas/química , Estereoisomerismo
15.
Nature ; 610(7933): 768-774, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36261532

RESUMO

Haem is an iron-containing tetrapyrrole that is critical for a variety of cellular and physiological processes1-3. Haem binding proteins are present in almost all cellular compartments, but the molecular mechanisms that regulate the transport and use of haem within the cell remain poorly understood2,3. Here we show that haem-responsive gene 9 (HRG-9) (also known as transport and Golgi organization 2 (TANGO2)) is an evolutionarily conserved haem chaperone with a crucial role in trafficking haem out of haem storage or synthesis sites in eukaryotic cells. Loss of Caenorhabditis elegans hrg-9 and its paralogue hrg-10 results in the accumulation of haem in lysosome-related organelles, the haem storage site in worms. Similarly, deletion of the hrg-9 homologue TANGO2 in yeast and mammalian cells induces haem overload in mitochondria, the site of haem synthesis. We demonstrate that TANGO2 binds haem and transfers it from cellular membranes to apo-haemoproteins. Notably, homozygous tango2-/- zebrafish larvae develop pleiotropic symptoms including encephalopathy, cardiac arrhythmia and myopathy, and die during early development. These defects partially resemble the symptoms of human TANGO2-related metabolic encephalopathy and arrhythmias, a hereditary disease caused by mutations in TANGO24-8. Thus, the identification of HRG-9 as an intracellular haem chaperone provides a biological basis for exploring the aetiology and treatment of TANGO2-related disorders.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Heme , Animais , Humanos , Arritmias Cardíacas/metabolismo , Encefalopatias/metabolismo , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Heme/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
EMBO J ; 42(24): e114051, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38059508

RESUMO

CDK11 is an emerging druggable target for cancer therapy due to its prevalent roles in phosphorylating critical transcription and splicing factors and in facilitating cell cycle progression in cancer cells. Like other cyclin-dependent kinases, CDK11 requires its cognate cyclin, cyclin L1 or cyclin L2, for activation. However, little is known about how CDK11 activities might be modulated by other regulators. In this study, we show that CDK11 forms a tight complex with cyclins L1/L2 and SAP30BP, the latter of which is a poorly characterized factor. Acute degradation of SAP30BP mirrors that of CDK11 in causing widespread and strong defects in pre-mRNA splicing. Furthermore, we demonstrate that SAP30BP facilitates CDK11 kinase activities in vitro and in vivo, through ensuring the stabilities and the assembly of cyclins L1/L2 with CDK11. Together, these findings uncover SAP30BP as a critical CDK11 activator that regulates global pre-mRNA splicing.


Assuntos
Precursores de RNA , Splicing de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fosforilação , Divisão Celular , Ciclinas/genética , Ciclinas/metabolismo
17.
PLoS Biol ; 22(7): e3002721, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008524

RESUMO

The abundance of distractors in the world poses a major challenge to our brain's limited processing capacity, but little is known about how selective attention modulates stimulus representations in the brain to reduce interference and support durable target memory. Here, we collected functional magnetic resonance imaging (fMRI) data in a selective attention task in which target and distractor pictures of different visual categories were simultaneously presented. Participants were asked to selectively process the target according to the effective cue, either before the encoding period (i.e., perceptual attention) or the maintenance period (i.e., reflective attention). On the next day, participants were asked to perform a memory recognition task in the scanner in which the targets, distractors, and novel items were presented in a pseudorandom order. Behavioral results showed that perceptual attention was better at enhancing target memory and reducing distractor memory than reflective attention, although the overall memory capacity (memory for both target and distractor) was comparable. Using multiple-voxel pattern analysis of the neural data, we found more robust target representation and weaker distractor representation in working memory for perceptual attention than for reflective attention. Interestingly, perceptual attention partially shifted the regions involved in maintaining the target representation from the visual cortex to the parietal cortex. Furthermore, the targets and distractors simultaneously presented in the perceptual attention condition showed reduced pattern similarity in the parietal cortex during retrieval compared to items not presented together. This neural pattern repulsion positively correlated with individuals' recognition of both targets and distractors. These results emphasize the critical role of selective attention in transforming memory representations to reduce interference and improve long-term memory performance.


Assuntos
Atenção , Imageamento por Ressonância Magnética , Memória de Longo Prazo , Memória de Curto Prazo , Lobo Parietal , Humanos , Atenção/fisiologia , Lobo Parietal/fisiologia , Masculino , Memória de Curto Prazo/fisiologia , Feminino , Memória de Longo Prazo/fisiologia , Adulto , Adulto Jovem , Objetivos , Mapeamento Encefálico , Estimulação Luminosa/métodos , Percepção Visual/fisiologia
18.
Nature ; 594(7864): 589-593, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135509

RESUMO

The metabotropic glutamate receptors (mGlus) are involved in the modulation of synaptic transmission and neuronal excitability in the central nervous system1. These receptors probably exist as both homo- and heterodimers that have unique pharmacological and functional properties2-4. Here we report four cryo-electron microscopy structures of the human mGlu subtypes mGlu2 and mGlu7, including inactive mGlu2 and mGlu7 homodimers; mGlu2 homodimer bound to an agonist and a positive allosteric modulator; and inactive mGlu2-mGlu7 heterodimer. We observed a subtype-dependent dimerization mode for these mGlus, as a unique dimer interface that is mediated by helix IV (and that is important for limiting receptor activity) exists only in the inactive mGlu2 structure. The structures provide molecular details of the inter- and intra-subunit conformational changes that are required for receptor activation, which distinguish class C G-protein-coupled receptors from those in classes A and B. Furthermore, our structure and functional studies of the mGlu2-mGlu7 heterodimer suggest that the mGlu7 subunit has a dominant role in controlling dimeric association and G-protein activation in the heterodimer. These insights into mGlu homo- and heterodimers highlight the complex landscape of mGlu dimerization and activation.


Assuntos
Receptores de Glutamato Metabotrópico/química , Microscopia Crioeletrônica , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína
19.
Nature ; 594(7864): 583-588, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135510

RESUMO

The metabotropic glutamate receptors (mGlus) have key roles in modulating cell excitability and synaptic transmission in response to glutamate (the main excitatory neurotransmitter in the central nervous system)1. It has previously been suggested that only one receptor subunit within an mGlu homodimer is responsible for coupling to G protein during receptor activation2. However, the molecular mechanism that underlies the asymmetric signalling of mGlus remains unknown. Here we report two cryo-electron microscopy structures of human mGlu2 and mGlu4 bound to heterotrimeric Gi protein. The structures reveal a G-protein-binding site formed by three intracellular loops and helices III and IV that is distinct from the corresponding binding site in all of the other G-protein-coupled receptor (GPCR) structures. Furthermore, we observed an asymmetric dimer interface of the transmembrane domain of the receptor in the two mGlu-Gi structures. We confirmed that the asymmetric dimerization is crucial for receptor activation, which was supported by functional data; this dimerization may provide a molecular basis for the asymmetric signal transduction of mGlus. These findings offer insights into receptor signalling of class C GPCRs.


Assuntos
Proteínas de Ligação ao GTP/química , Receptores de Glutamato Metabotrópico/química , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Multimerização Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
20.
Proc Natl Acad Sci U S A ; 121(34): e2401874121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39133855

RESUMO

The human neck is a unique mechanical structure, highly flexible but fatigue prone. The rising prevalence of neck pain and chronic injuries has been attributed to increasing exposure to fatigue loading in activities such as prolonged sedentary work and overuse of electronic devices. However, a causal relationship between fatigue and musculoskeletal mechanical changes remains elusive. This work aimed to establish this relationship through a unique experiment design, inspired by a cantilever beam mechanical model of the neck, and an orchestrated deployment of advanced motion-force measurement technologies including dynamic stereo-radiographic imaging. As a group of 24 subjects performed sustained-till-exhaustion neck exertions in varied positions-neutral, extended, and flexed, their cervical spine musculoskeletal responses were measured. Data verified the occurrence of fatigue and revealed fatigue-induced neck deflection which increased cervical lordosis or kyphosis by 4-5° to 11°, depending on the neck position. This finding and its interpretations render a renewed understanding of muscle fatigue from a more unified motor control perspective as well as profound implications on neck pain and injury prevention.


Assuntos
Fadiga Muscular , Cervicalgia , Pescoço , Humanos , Masculino , Adulto , Feminino , Fadiga Muscular/fisiologia , Cervicalgia/fisiopatologia , Cervicalgia/etiologia , Vértebras Cervicais/diagnóstico por imagem , Fenômenos Biomecânicos , Músculos do Pescoço/fisiologia , Amplitude de Movimento Articular , Adulto Jovem , Lordose/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA