Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(10): 3931-3938, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35503740

RESUMO

Conventional plastic foams are usually produced by fossil-fuel-derived polymers, which are difficult to degrade in nature. As an alternative, cellulose is a promising biodegradable polymer that can be used to fabricate greener foams, yet such a process typically relies on methods (e.g., freeze-drying and supercritical-drying) that are hardly scalable and time-consuming. Here, we develop a fast and scalable approach to prepare cellulose-graphite foams via rapidly cross-linking the cellulose fibrils in metal ions-containing solution followed by ambient drying. The prepared foams exhibit low density, high compressive strength, and excellent water stability. Moreover, the cross-linking of the cellulose fibrils can be triggered by various metal ions, indicating good universality. We further use density functional theory to reveal the cross-linking effect of different ions, which shows good agreement with our experimental observation. Our approach presents a sustainable route toward low-cost, environmentally friendly, and scalable foam production for a range of applications.


Assuntos
Celulose , Grafite , Íons , Polímeros , Água
2.
Clin Exp Pharmacol Physiol ; 49(2): 219-227, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34689350

RESUMO

Over 50% prescribed drugs are metabolised by cytochrome P450 3A (CYP3A) and glutathione S-transferase pi (GSTP1) adds a glutathione to the oxidative products by CYP3A, which increases the hydrophilic property of metabolites and facilitates the excretion. Single nucleotide polymorphisms (SNPs) of CYP3A and GSTP1 show a diverse allele and genotype frequencies distribution among the world populations. The present study aimed to investigate the genotype and allele frequency distribution patterns of CYP3A4, CYP3A5, CYP3A7 and GSTP1 polymorphisms among healthy participants in mainland Tibetan, Mongolian, Uyghur, and Han Chinese populations. Blood samples were collected from 842 unrelated healthy subjects (323 Tibetan, 134 Mongolian, 162 Uyghur, and 223 Han) for genotyping analysis. Variant allele frequencies of CYP3A4 rs2242480, CYP3A5 rs776746, CYP3A7 rs2257401, and GSTP1 Ile105Val were observed in Han (0.253, 0.686, 0.312 and 0.188), Tibetan (0.186, 0.819, 0.192 and 0.173), Mongolian (0.198, 0.784, 0.228 and 0.235) and Uyghur (0.179, 0.858, 0.182 and 0.250) respectively. The allele frequency of CYP3A7*1C in Uyghur (0.019) was higher than that in Tibetan (0.002, p < 0.01). There was a strong linkage disequilibrium between CYP3A4 rs2242480, CYP3A5 rs776746, and CYP3A7 rs2257401 among the four ethnic groups. The results might be useful for the precise medication in the Chinese populations.


Assuntos
Citocromo P-450 CYP3A , Polimorfismo de Nucleotídeo Único , Alelos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Frequência do Gene , Genótipo , Glutationa S-Transferase pi/genética , Humanos , Tibet
3.
J Am Chem Soc ; 141(44): 17830-17837, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31647658

RESUMO

The construction of two-dimensional (2D) layered compounds for nanofluidic ion transport has recently attracted increasing interest due to the facile fabrication, tunable channel size, and high flux of these materials. Here we design a nacre-mimetic graphite-based nanofluidic structure in which the nanometer-thick graphite flakes are wrapped by negatively charged nanofibrillated cellulose (NFC) fibers to form multiple 2D confined spacings as nanochannels for rapid cation transport. At the same time, the graphite-NFC structure exhibits an ultralow electrical conductivity (σe ≤ 10-9 S/cm), even when the graphite concentration is up to 50 wt %, well above the percolation threshold (∼1 wt %). By tuning the hydration degree of graphite-NFC composites, the surface-charge-governed ion transport in the confined ∼1 nm spacings exhibits nearly 12 times higher ionic conductivity (1 × 10-3 S/cm) than that of a fully swollen structure (∼1.5 nm, 8.5 × 10-5 S/cm) at salt concentrations up to 0.1 M. The resulting charge selective conductor shows intriguing features of both high ionic conductivity and low electrical conductivity. Moreover, the inherent stability of the graphite and NFC components contributes to the strong functionality of the nanofluidic ion conductors in both acidic and basic environments. Our work demonstrates this 1D-2D material hybrid system as a suitable platform to study nanofluidic ion transport and provides a promising strategy to decouple ionic and electronic pathways, which is attractive for applications in new nanofluidic device designs.

4.
Bioorg Med Chem Lett ; 29(11): 1291-1297, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30962085

RESUMO

Hepatitis B virus (HBV) is a global health problem requiring more efficient and better tolerated anti-HBV agent. In this paper, a series of novel 2'-deoxy-2'-fluoro-2'-C-methyl-ß-d-arabinofuranosyl 8-azanebularine analogues (1 and 2a) and N4-substituted 8-azaadenosine derivatives (2b-g) were designed, synthesized and screened for in vitro anti-HBV activity. Two concise and practical synthetic routes were developed toward the structural motif construction of 2'-deoxy-2'-fluoro-2'-C-methyl-ß-d-arabinofuranosyl 8-azainosine from the ribonolactone 3 under mild conditions. The in vitro anti-HBV screening results showed that these 8-azanebularine analogues had a significant inhibitory effect on the expression of HBV antigens and HBV DNA at a concentration of 20 µM. Among them, halogen-substituted 8-azaadenosine derivative 2g displayed activities comparable to that of 3TC. In particular, 2g retained excellent activity against lamivudine-resistant HBV mutants.


Assuntos
Antivirais/farmacologia , Desenho de Fármacos , Vírus da Hepatite B/efeitos dos fármacos , Nucleosídeos de Purina/farmacologia , Ribonucleosídeos/farmacologia , Antivirais/síntese química , Antivirais/química , DNA Viral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/química , Ribonucleosídeos/síntese química , Ribonucleosídeos/química , Relação Estrutura-Atividade
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1573-1582, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29452249

RESUMO

Overexpression and/or hyperactivation of cyclin-dependent kinase 4 (CDK4) has been found in many types of human cancers, and a CDK4 specific inhibitor, palbociclib, has been recently approved by the FDA for the treatment of breast cancer. However, the expression and the therapeutic potential of CDK4 in osteosarcoma remain unclear. In the present study, CDK4 was found to be highly expressed in human osteosarcoma tissues and cell lines as compared with normal human osteoblasts. Elevated CDK4 expression correlated with metastasis potential and poor prognosis in osteosarcoma patients as determined by immunohistochemical analysis in a human osteosarcoma tissue microarray (TMA). CDK4 inhibition by either palbociclib or specific small interference RNA (siRNA) exhibited dose-dependent inhibition of osteosarcoma cell proliferation and growth, accompanied by suppression of the CDK4/6-cyclinD-Rb signaling pathway. Flow cytometry analysis showed that CDK4 knockdown arrested osteosarcoma cells in the G1 phase of the cell cycle and induced cell apoptosis. Furthermore, inhibition of CDK4 significantly decreased osteosarcoma cell migration in vitro determined by the wound healing assay. These data highlight that CDK4 may be a potential promising therapeutic target in the treatment of human osteosarcoma.


Assuntos
Neoplasias Ósseas , Quinase 4 Dependente de Ciclina , Proteínas de Neoplasias , Osteossarcoma , Piperazinas/farmacologia , Piridinas/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Fase G1/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/enzimologia , Osteossarcoma/genética , Osteossarcoma/patologia
6.
Angew Chem Int Ed Engl ; 57(10): 2625-2629, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346707

RESUMO

The interaction between metal nanoparticles (NPs) and their substrate plays a critical role in determining the particle morphology, distribution, and properties. The pronounced impact of a thin oxide coating on the dispersion of metal NPs on a carbon substrate is presented. Al2 O3 -supported Pt NPs are compared to the direct synthesis of Pt NPs on bare carbon surfaces. Pt NPs with an average size of about 2 nm and a size distribution ranging between 0.5 nm and 4.0 nm are synthesized on the Al2 O3 coated carbon nanofiber, a significant improvement compared to those directly synthesized on a bare carbon surface. First-principles modeling verifies the stronger adsorption of Pt clusters on Al2 O3 than on carbon, which attributes the formation of ultrafine Pt NPs. This strategy paves the way towards the rational design of NPs with enhanced dispersion and controlled particle size, which are promising in energy storage and electrocatalysis.

7.
Small ; 13(18)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28263026

RESUMO

Nanostructures of ternary topological insulator (TI) Bi2 Te2 Se are, in principle, advantageous to the manifestation of topologically nontrivial surface states, due to significantly enhanced surface-to-volume ratio compared with its bulk crystals counterparts. Herein, the synthesis of 2D Bi2 Te2 Se crystals on mica via the van der Waals epitaxy method is explored and systematically the growth behaviors during the synthesis process are investigated. Accordingly, 2D Bi2 Te2 Se crystals with domain size up to 50 µm large and thickness down to 2 nm are obtained. A pronounced weak antilocalization effect is clearly observed in the 2D Bi2 Te2 Se crystals at 2 K. The method for epitaxial growth of 2D ternary Bi2 Te2 Se crystals may inspire materials engineering toward enhanced manifestation of the subtle surface states of TIs and thereby facilitate their potential applications in next-generation spintronics.

8.
Nano Lett ; 16(3): 2103-7, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26913671

RESUMO

The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.


Assuntos
Cristalização/métodos , Gálio/química , Selênio/química , Calcogênios/química , Temperatura Baixa , Modelos Moleculares , Volatilização
9.
Tumour Biol ; 37(5): 6881-91, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26662569

RESUMO

The aim was to investigate the function of fibroblast growth factor receptor 4 (FGFR4) in gastric cancer (GC) and explore the treatment value of agent targeted to FGFR4. Function assays in vitro and in vivo were performed to investigate the discrepancy of biological features among the GC cells with different expression of FGFR4. GC cells were treated with the single and combination of PD173074 (PD, an inhibitor of FGFR4) and 5-fluorouracil (5-Fu). The invasion ability were stronger, and the apoptosis rates were lower in MGC803 and BGC823 cells treated with FGFR4-LV5 (over-expression of FGFR4 protein) (P < 0.05). The proliferation ability of GC cells is reduced when treated by the single and combination of 5-Fu and PD while that of the FGFR4-LV5 group was less inhibited compared with control group (P < 0.05). The apoptosis rates are remarkably increased in GC cells treated with the single and combination of 5-Fu and PD (P < 0.05). However, the apoptosis rate obviously is reduced in GC cells treated with FGFR4-LV5 compared with control group (P < 0.05). The expression of PCNA and Bcl-XL is remarkably decreased, and the expression of Caspase-3 and cleaved Caspase-3 is obviously increased in GC cells treated with the single and combination of 5-Fu and PD. The tumor volumes of nude mice in FGFR4-LV5 group were much more increased (P < 0.05). The over-expression of FGFR4 enhanced the proliferation ability of GC in vitro and in vivo. The combination of 5-Fu and PD exerted synergetic effect in weakening the proliferation ability and promoting apoptosis in GC cells, while the over-expression of FGFR4 might inhibit the efficacy of two drugs.


Assuntos
Fluoruracila/farmacologia , Expressão Gênica , Pirimidinas/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Neoplasias Gástricas/genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Neoplasias Gástricas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Am Chem Soc ; 137(25): 7994-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26060875

RESUMO

Nonlinear effects in two-dimensional (2D) atomic layered materials have recently attracted increasing interest. Phenomena such as nonlinear optical edge response, chiral electroluminescence, and valley and spin currents beyond linear orders have opened up a great opportunity to expand the functionalities and potential applications of 2D materials. Here we report the first observation of strong optical second-harmonic generation (SHG) in monolayer GaSe under nonresonant excitation and emission condition. Our experiments show that the nonresonant SHG intensity of GaSe is the strongest among all the 2D atomic crystals measured up to day. At the excitation wavelength of 1600 nm, the SHG signal from monolayer GaSe is around 1-2 orders of magnitude larger than that from monolayer MoS2 under the same excitation power. Such a strong nonlinear signal facilitates the use of polarization-dependent SHG intensity and SHG mapping to investigate the symmetry properties of this material: the monolayer GaSe shows 3-fold lattice symmetry with an intrinsic correspondence to its geometric triangular shape in our growth condition; whereas the bilayer GaSe exhibits two dominant stacking orders: AA and AB stacking. The correlation between the stacking orders and the interlayer twist angles in GaSe bilayer indicates that different triangular GaSe atomic layers have the same dominant edge configuration. Our results provide a route toward exploring the structural information and the possibility to observe other nonlinear effects in GaSe atomic layers.

11.
Tumour Biol ; 36(9): 6715-23, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25874496

RESUMO

MicroRNAs (miRs) are short endogenous non-coding RNAs that act as posttranscriptional regulatory factors of gene expression. Downregulation of miR-1 has been reported in gastric cancer; however, the mechanisms underlying its functions via target genes in gastric cancer remain largely unknown. The purpose of this study was to investigate the mechanism by which miR-1 inhibits gastric cancer cell proliferation and migration. The effects of miR-1 on gastric cancer cell proliferation and migration were determined by MTT and wound-healing assays. Cell protein expression of the miR-1 target gene MET was analyzed by Western blotting. Finally, MET expression was evaluated by immunohistochemistry in a stomach tumor tissue microarray (TMA). Ectopic expression of miR-1 inhibited proliferation and migration in both AGS and SGC-7901 gastric cancer cell lines. miR-1 directly targets the MET gene and downregulates its expression. MET siRNA also inhibited proliferation and migration in both cell lines. Immunohistochemistry revealed significantly higher MET expression levels in gastric cancer tissues compared with matched adjacent non-cancer tissues. These findings indicate that the miR-1/MET pathway is a potential therapeutic target due to its crucial role in gastric cancer cell proliferation and migration.


Assuntos
Proliferação de Células/genética , MicroRNAs/biossíntese , Proteínas Proto-Oncogênicas c-met/biossíntese , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais , Neoplasias Gástricas/patologia
12.
Zhonghua Gan Zang Bing Za Zhi ; 23(5): 358-62, 2015 May.
Artigo em Zh | MEDLINE | ID: mdl-26192242

RESUMO

OBJECTIVE: To study the CPS-II mechanism underlying the pathological process of elevated blood ammonia leading to liver injury. METHODS: An in vitro hyperammonemia hepatocyte cell model was constructed by exposure to various concentrations of NH4Cl. The subsequent changes to cellular morphology were observed by microscopy. to cell apoptosis were determined by flow cytometry, and to mRNA and protein expression of CPS-II were examined by real-time PCR and western blotting, respectively. RESULTS: Exposure to NH4Cl led to dose-dependent morphological damage, apoptosis and necrosis of the hepatocytes. The apoptosis rate was significantly higher for the high-dose group than for the control (no exposure) group (24.7% ± 2.39% vs. 4.1% ± 0.78%, q =8.06, P less than 0.05). Expression of the CPS-II mRNA was significantly elevated in response to NH4Cl exposure (vs. the control group; F=191.881, P < 0.05).The CPS-II mRNA expression level increased with increasing NH4Cl concentration (grey values: 1.040 ± 0.045, 1.641 ± 0.123, 2.285 ± 0.167 and 3.347 ± 0.124, respectively). The CPS-II protein expression level was also significantly enhanced in response to the NH4Cl exposures (CPS-II protein and internal GAPDH grey value ratios: 0.099 ± 0.0130, 0.143 ± 0.025, 0.161 ± 0.036 and 0.223 ± 0.042, respectively; t=3.825, 3.968 and 6.908, P less than 0.05). CONCLUSION: CPS-II mRNA and protein expression levels become elevated with increase in the NH4Cl concentrations, suggesting that in addition to the urea cycle, CPS-II may play an important role in the ammonia metabolism under the condition of hyperammonemia.


Assuntos
Hepatócitos , Hiperamonemia , Amônia , Apoptose , Humanos , Fígado , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Somatostatina
13.
Arch Biochem Biophys ; 555-556: 16-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24878366

RESUMO

Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis.


Assuntos
Amônia/metabolismo , Bilirrubina/metabolismo , Hepatócitos/metabolismo , Hiperamonemia/metabolismo , Cloreto de Amônio/toxicidade , Apoptose , Sobrevivência Celular , Ciclo do Ácido Cítrico , Metabolismo Energético , Glucuronosiltransferase/metabolismo , Heme Oxigenase-1/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Hiperamonemia/patologia , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/patologia , Cultura Primária de Células
14.
BMC Gastroenterol ; 14: 151, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25145683

RESUMO

BACKGROUND: Numerous pathological processes that affect liver function in patients with liver failure have been identified. Among them, hyperammonia is one of the most common phenomena.The purpose of this study was to determine whether hyperammonia could induced specific liver injury. METHODS: Hyperammonemic cells were established using NH4Cl. The cells were assessed by MTT, ELISA, and flow cytometric analyses. The expression levels of selected genes and proteins were confirmed by quantitative RT-PCR and western blot analyses. RESULTS: The effects of 20 mM NH4Cl pretreatment on the cell proliferation and apoptosis of primary hepatocytes and other cells were performed by MTT assays and flow cytometric analyses. Significant increasing in cytotoxicity and apoptosis were only observed in hepatocytes. The cell damage was reduced after adding BAPTA-AM but unchanged after adding EGTA. The expression levels of caspase-3, cytochrome C, calmodulin, and inducible nitric oxide synthase were increased and that of bcl-2 was reduced. The Na+-K+-ATPase activities in hyperammonia liver cells was no signiaficant difference compaired with the control group, but was decreased in astrocytes. NH4Cl pretreatment of primary hepatocytes promoted the activation of mitochondrial permeability transition pores and the mitochondria swelled irregularly. CONCLUSIONS: Hyperammonia induces specific liver injury through an intrinsic Ca2+-independent apoptosis pathway.


Assuntos
Apoptose , Hepatócitos/metabolismo , Hiperamonemia/complicações , Hepatopatias/etiologia , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células , Citocromos c/genética , Citocromos c/metabolismo , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Hiperamonemia/metabolismo , Hepatopatias/metabolismo , Células MCF-7 , Mitocôndrias , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
15.
Int Immunopharmacol ; 132: 111934, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38574701

RESUMO

PD-1/PD-L1 blockade therapy has brought great success to cancer treatment. Nevertheless, limited beneficiary populations and even hyperprogressive disease (HPD) greatly constrain the application of PD-1/PD-L1 inhibitors in clinical treatment. HPD is a special pattern of disease progression with rapid tumor growth and even serious consequences of patient death, which requires urgent attention. Among the many predisposing causes of HPD, regulatory T cells (Tregs) are suspected because they are amplified in cases of HPD. Tregs express PD-1 thus PD-1/PD-L1 blockade therapy may have an impact on Tregs which leads to HPD. Tregs are a subset of CD4+ T cells expressing FoxP3 and play critical roles in suppressing immunity. Tregs migrate toward tumors in the presence of chemokines to suppress antitumor immune responses, causing cancer cells to grow and proliferate. Studies have shown that deleting Tregs could enhance the efficacy of PD-1/PD-L1 blockade therapy and reduce the occurrence of HPD. This suggests that immunotherapy combined with Treg depletion may be an effective means of avoiding HPD. In this review, we summarized the immunosuppressive-related functions of Tregs in antitumor therapy and focused on advances in therapy combining Tregs depletion with PD-1/PD-L1 blockade in clinical studies. Moreover, we provided an outlook on Treg-targeted HPD early warning for PD-1/PD-L1 blockade therapy.


Assuntos
Antígeno B7-H1 , Progressão da Doença , Inibidores de Checkpoint Imunológico , Neoplasias , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Animais , Humanos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos
16.
Transl Oncol ; 44: 101945, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555742

RESUMO

Metformin, as the preferred antihyperglycemic drug for type 2 diabetes, has been found to have a significant effect in inhibiting tumor growth in recent years. However, metformin alone in cancer treatment has the disadvantages of high dose concentrations and few targeted cancer types. Increasing studies have confirmed that metformin can be used in combination with conventional anticancer therapy to obtain more promising clinical benefits, which is expected to be rapidly transformed and applied in clinic. Some combination therapy strategies including metformin combined with chemotherapy, radiotherapy, targeted therapy and immunotherapy have been proven to have more significant antitumor effects and longer survival time than monotherapy. In this review, we summarize the synergistic antitumor effects and mechanisms of metformin in combination with other current conventional anticancer therapies. In addition, we update the research progress and the latest prospect of the metformin-combined application in the cancer treatment. This work could provide more evidence and future direction for the clinical application of metformin in antitumor.

17.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123708, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38042124

RESUMO

Carboxylesterases (CEs) play great role in CEs-related diseases and drug metabolism. Selectively monitoring its activity is important to explore its role in CEs-related diseases and drug combination. Herein, a new "turn-on" near-infrared (NIR) fluorescent probe (CHY-1) was reported with large Stokes shift (145 nm) for CEs detection. Dicyanoisophorone-based derivative was chosen as NIR fluorophore and 4-bromobutyrate was the identifying group. What's more, CHY-1 exhibited ultra-sensitivity (LOD âˆ¼ 9.2 × 10-5 U/mL), high selectivity against Acetylcholinesterase (AChE), Butyrylcholinesterase (BChE) and Chymotrypsin for CEs fluorescence detection under physiological pH and temperature. Furthermore, CHY-1 showed little effect on cell viability at high concentration and featured good optical imaging character for the slight change of CEs activity induced by 5-Fu (5-Fluorouridine, anti-tumor drug) and CEs inhibitor in living cells. Moreover, CHY-1 was also used to detect the activity and distribution of CEs in mice. Taken together, CHY-1 had widely applicable value in the diagnosis of CEs-related diseases and drug combination.


Assuntos
Hidrolases de Éster Carboxílico , Corantes Fluorescentes , Humanos , Camundongos , Animais , Acetilcolinesterase , Butirilcolinesterase , Células HeLa , Imagem Óptica/métodos , Combinação de Medicamentos
18.
Front Pharmacol ; 15: 1303732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38420199

RESUMO

Background and objective: Osteosarcoma is a common primary malignant tumor of bone, and doxorubicin is one of the most widely used therapeutic drugs. While the problem of doxorubicin resistance limits the long-term treatment benefits in osteosarcoma patients. The role of miRNAs and their target genes in osteosarcoma have become increasingly prominent. Currently, there is no report on miR-506-3p reversing doxorubicin resistance by targeting STAT3 in osteosarcoma. The purpose of this study was to investigate the molecular mechanism that overexpression of miR-506-3p reverses doxorubicin resistance in drug-resistant osteosarcoma cells. Methods: Doxorubicin-resistant osteosarcoma cells (U-2OS/Dox) were constructed by intermittent stepwise increasing stoichiometry. The target genes of miR-506-3p were predicted by bioinformatics approach and the targeting relationship between miR-506-3p and STAT3 was detected using dual luciferase reporter assay. U-2OS/Dox cells were treated with miR-506-3p overexpression and STAT3 silencing respectively. Then Western blot and RT-qPCR were used to detect the protein and mRNA expression levels of JAK2/STAT3 signaling pathway, drug-resistant and apoptotic associated molecules. The migration and invasion were assessed by cell scratch assay and transwell assay. The cell proliferative viability and apoptosis were investigated by CCK8 assay and flow cytometry assay. Results: U-2OS/Dox cells were successfully constructed with a 14.4-fold resistance. MiR-506-3p is directly bound to the 3'-UTR of STAT3 mRNA. Compared with U-2OS cells, the mRNA expression of miR-506-3p was reduced in U-2OS/Dox cells. Overexpression of miR-506-3p decreased the mRNA expression levels of JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and decreased the protein expression levels of p-JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and conversely increased Bax expression. It also inhibited the proliferation, migration and invasion of U-2OS/Dox cells and promoted cells apoptosis. The results of STAT3 silencing experiments in the above indicators were consistent with that of miR-506-3p overexpression. Conclusion: Overexpression of miR-506-3p could inhibit the JAK2/STAT3 pathway and the malignant biological behaviors, then further reverse doxorubicin resistance in drug-resistant osteosarcoma cells. The study reported a new molecular mechanism for reversing the resistance of osteosarcoma to doxorubicin chemotherapy and provided theoretical support for solving the clinical problems of doxorubicin resistance in osteosarcoma.

19.
J Pharm Pharmacol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173028

RESUMO

OBJECTIVES: To unveil the mechanism of the Bufei Huoxue formula (BHF) for chronic obstructive pulmonary disease (COPD) through integrated network pharmacology (NP) and experimental verification. METHODS: LC-MS was first applied to the analysis of both in vitro and in vivo samples from BHF for chemical profiling. Then a ligand library was prepared for NP to reveal the mechanism of BHF against COPD. Finally, verification was performed using an animal model related to the results from the NP. KEY FINDINGS: A ligand library containing 170 compounds from BHF was obtained, while 357 targets related to COPD were filtered to construct a PPI network. GO and KEGG analysis demonstrated that bavachin, paeoniflorin, and demethylation of formononetin were the major compounds for BHF against COPD, which mainly by regulating the PI3K/Akt pathway. The experiments proved that BHF could alleviate lung injury and attenuate the release of TNF-α and IL-6 in the lung and BALF in a dose-dependent manner. Western blot further demonstrated the down-regulated effect of BHF on p-PI3K. CONCLUSION: BHF provides a potent alternative for the treatment of COPD, and the mechanism is probably associated with regulating the PI3K/AKT pathway to alleviate inflammatory injury by bavachin, paeoniflorin, and demethylation of formononetin.

20.
Int J Biol Macromol ; 269(Pt 1): 131966, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697422

RESUMO

JAK2/STAT3/MYC axis is dysregulated in nearly 70 % of human cancers, but targeting this pathway therapeutically remains a big challenge in cancer therapy. In this study, genes associated with JAK2, STAT3, and MYC were analyzed, and potential target genes were selected. Leucine-rich PPR motif-containing protein (LRPPRC) whose function and regulation are not fully understood, emerged as one of top 3 genes in terms of RNA epigenetic modification. Here, we demonstrate LRPPRC may be an independent prognostic indicator besides JAK2, STAT3, and MYC. Mechanistically, LRPPRC impairs N6-methyladenosine (m6A) modification of JAK2, STAT3, and MYC to facilitate nuclear mRNA export and expression. Meanwhile, excess LRPPRC act as a scaffold protein binding to JAK2 and STAT3 to enhance stability of JAK2-STAT3 complex, thereby facilitating JAK2/STAT3/MYC axis activation to promote esophageal squamous cell carcinoma (ESCC) progression. Furthermore, 5,7,4'-trimethoxyflavone was verified to bind to LRPPRC, STAT3, and CDK1, dissociating LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 interaction, leading to impaired tumorigenesis in 4-Nitroquinoline N-oxide induced ESCC mouse models and suppressed tumor growth in ESCC patient derived xenograft mouse models. In summary, this study suggests regulation of m6A modification by LRPPRC, and identifies a novel triplex target compound, suggesting that targeting LRPPRC-mediated JAK2/STAT3/MYC axis may overcome JAK2/STAT3/MYC dependent tumor therapeutic dilemma.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Janus Quinase 2 , Fator de Transcrição STAT3 , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Fator de Transcrição STAT3/metabolismo , Animais , Janus Quinase 2/metabolismo , Camundongos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/metabolismo , Adenosina/química , Flavonas/farmacologia , Flavonas/química , Proteína Quinase CDC2/metabolismo , Proteína Quinase CDC2/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Feminino , Masculino , Flavonoides/farmacologia , Flavonoides/química , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA