Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 70(6): 468-481, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38381098

RESUMO

Small muscular pulmonary artery remodeling is a dominant feature of pulmonary arterial hypertension (PAH). PSEN1 affects angiogenesis, cancer, and Alzheimer's disease. We aimed to determine the role of PSEN1 in the pathogenesis of vascular remodeling in pulmonary hypertension (PH). Hemodynamics and vascular remodeling in the Psen1-knockin and smooth muscle-specific Psen1-knockout mice were assessed. The functional partners of PSEN1 were predicted by bioinformatics analysis and biochemical experiments. The therapeutic effect of PH was evaluated by administration of the PSEN1-specific inhibitor ELN318463. We discovered that both the mRNA and protein levels of PSEN1 were increased over time in hypoxic rats, monocrotaline rats, and Su5416/hypoxia mice. Psen1 transgenic mice were highly susceptible to PH, whereas smooth muscle-specific Psen1-knockout mice were resistant to hypoxic PH. STRING analysis showed that Notch1/2/3, ß-catenin, Cadherin-1, DNER (delta/notch-like epidermal growth factor-related receptor), TMP10, and ERBB4 appeared to be highly correlated with PSEN1. Immunoprecipitation confirmed that PSEN1 interacts with ß-catenin and DNER, and these interactions were suppressed by the catalytic PSEN1 mutations D257A, D385A, and C410Y. PSEN1 was found to mediate the nuclear translocation of the Notch1 intracellular domains and activated RBP-Jκ. Octaarginine-coated liposome-mediated pharmacological inhibition of PSEN1 significantly prevented and reversed the pathological process in hypoxic and monocrotaline-induced PH. PSEN1 essentially drives the pathogenesis of PAH and interacted with the noncanonical Notch ligand DNER. PSEN1 can be used as a promising molecular target for treating PAH. PSEN1 inhibitor ELN318463 can prevent and reverse the progression of PH and can be developed as a potential anti-PAH drug.


Assuntos
Hipertensão Pulmonar , Presenilina-1 , Remodelação Vascular , Animais , Remodelação Vascular/efeitos dos fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/patologia , Ratos , Camundongos , Camundongos Knockout , Ratos Sprague-Dawley , Masculino , Pirróis/farmacologia , Humanos , Hipóxia/metabolismo , Monocrotalina , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Indóis
2.
Extremophiles ; 28(1): 11, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240933

RESUMO

The isolated halophilic bacterial strain Halovibrio variabilis TG-5 showed a good performance in the pretreatment of coal gasification wastewater. With the optimum culture conditions of pH = 7, a temperature of 46 °C, and a salinity of 15%, the chemical oxygen demand and volatile phenol content of pretreated wastewater were decreased to 1721 mg/L and 94 mg/L, respectively. The removal rates of chemical oxygen demand and volatile phenol were over 90% and 70%, respectively. At the optimum salinity conditions of 15%, the total yield of intracellular compatible solutes and the extracellular transient released yield under hypotonic conditions were increased to 6.88 g/L and 3.45 g/L, respectively. The essential compatible solutes such as L-lysine, L-valine, and betaine were important in flocculation mechanism in wastewater pretreatment. This study provided a new method for pretreating coal gasification wastewater by halophilic microorganisms, and revealed the crucial roles of compatible solutes in the flocculation process.


Assuntos
Halomonadaceae , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Floculação , Carvão Mineral , Fenol/análise , Fenóis , Reatores Biológicos
3.
Arterioscler Thromb Vasc Biol ; 43(7): 1179-1198, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37139839

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been implicated in pulmonary hypertension progression through largely unknown mechanisms. Pulmonary artery endothelial cell (PAEC) dysfunction is a hallmark in the pathogenesis of pulmonary hypertension. However, the specific role of circular RNAs in PAEC injury caused by hypoxia remains unclear. METHODS: In this study, using the Western blotting, RNA pull down, Dual-luciferase reporter assay, immunohistochemistry, and immunofluorescence, we identified a novel circular RNA derived from alternative splicing of the keratin 4 gene (circKrt4). RESULTS: CircKrt4 was upregulated in lung tissues and plasma and specifically in PAECs under hypoxic conditions. In the nucleus, circKrt4 induces endothelial-to-mesenchymal transition by interacting with the Pura (transcriptional activator protein Pur-alpha) to promote N-cadherin gene activation. In the cytoplasm, increased circKrt4 leads to mitochondrial dysfunction by inhibiting cytoplasmic-mitochondrial shuttling of mitochondrial-bound Glpk (glycerol kinase). Intriguingly, circKrt4 was identified as a super enhancer-associated circular RNA that is transcriptionally activated by a transcription factor, CEBPA (CCAAT enhancer binding protein alpha). Furthermore, RBM25 (RNA-binding-motif protein 25) was found to regulate circKrt4 cyclization by increase the back-splicing of Krt4 gene. CONCLUSIONS: These findings demonstrate that a super enhancer-associated circular RNA-circKrt4 modulates PAEC injury to promote pulmonary hypertension by targeting Pura and Glpk.


Assuntos
Hipertensão Pulmonar , Artéria Pulmonar , Camundongos , Animais , Artéria Pulmonar/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proliferação de Células , Hipóxia/metabolismo , RNA/genética , Células Endoteliais/metabolismo
4.
Appl Microbiol Biotechnol ; 108(1): 214, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363425

RESUMO

Glucosylglycerol (GG) is a natural compatible solute that can be synthesized by many cyanobacteria and a few heterotrophic bacteria under high salinity conditions. In cyanobacteria, GG is synthesized by GG-phosphate synthase and GG-phosphate phosphatase, and a hydrolase GGHA catalyzes its degradation. In heterotrophic bacteria (such as some Marinobacter species), a fused form of GG-phosphate phosphatase and GG-phosphate synthase is present, but the cyanobacteria-like degradation pathway is not available. Instead, a phosphorylase GGP, of which the coding gene is located adjacent to the gene that encodes the GG-synthesizing enzyme, is supposed to perform the GG degradation function. In the present study, a GGP homolog from the salt-tolerant M. salinexigens ZYF650T was characterized. The recombinant GGP catalyzed GG decomposition via a two-step process of phosphorolysis and hydrolysis in vitro and exhibited high substrate specificity toward GG. The activity of GGP was enhanced by inorganic salts at low concentrations but significantly inhibited by increasing salt concentrations. While the investigation on the physiological role of GGP in M. salinexigens ZYF650T was limited due to the failed induction of GG production, the heterologous expression of ggp in the living cells of the GG-producing cyanobacterium Synechocystis sp. PCC 6803 significantly reduced the salt-induced GG accumulation. Together, these data suggested that GGP may represent a novel pathway of microbial GG catabolism. KEY POINTS: • GGP catalyzes GG degradation by a process of phosphorolysis and hydrolysis • GGP-catalyzed GG degradation is different from GGHA-based GG degradation • GGP represents a potential novel pathway of microbial GG catabolism.


Assuntos
Glucosídeos , Fosforilases , Synechocystis , Fosforilases/química , Monoéster Fosfórico Hidrolases/genética , Fosfatos
5.
J Mol Cell Cardiol ; 176: 41-54, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36716953

RESUMO

Pulmonary hypertension (PH) is a serious and fatal disease characterized by pulmonary vasoconstriction and pulmonary vascular remodeling. The excessive autophagy of pulmonary artery smooth muscle cells (PASMCs) is one of the important factors of pulmonary vascular remodeling. A number of studies have shown that circular RNA (circRNA) can participate in the onset of PH. Our previous studies have shown that circRNA calmodulin 4 (circ-calm4) is involved in the progression of hypoxic PH. However, the role of circ-calm4 on regulation of hypoxic PH autophagy has not been reported. In this study, we demonstrated for the first time that hypoxia-mediated upregulated circ-calm4 expression has a key regulatory effect on autophagy in hypoxia-induced PASMCs and hypoxic PH mouse models. Knockdown of circ-calm4 both in vivo and in vitro can inhibit the autophagy in PASMCs induced by hypoxia. We also performed bioinformatics predictions and conducted experiments to verify that circ-calm4 bound to the purine-rich binding protein (Purb) to promote its expression in the nucleus, thereby initiating the transcription of autophagy-related protein Beclin1. Interestingly, we found that Beclin1 transcription initiated by Purb was accompanied by a modification of Beclin1 super-enhancer to improve transcription activity and efficiency. Overall, our results confirm that the circ-calm4/Purb/Beclin1 signal axis is involved in the occurrence of hypoxia-induced PASMCs autophagy, and the novel regulatory mechanisms and signals transduction pathways in PASMC autophagy induced by hypoxia.


Assuntos
Hipertensão Pulmonar , Artéria Pulmonar , Animais , Camundongos , Autofagia , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Proliferação de Células , Células Cultivadas , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Remodelação Vascular
6.
Mol Med ; 28(1): 126, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284300

RESUMO

BACKGROUND: Pyroptosis is a form of programmed cell death involved in the pathophysiological progression of hypoxic pulmonary hypertension (HPH). Emerging evidence suggests that N6-methyladenosine (m6A)-modified transcripts of long noncoding RNAs (lncRNAs) are important regulators that participate in many diseases. However, whether m6A modified transcripts of lncRNAs can regulate pyroptosis in HPH progression remains unexplored. METHODS: The expression levels of FENDRR in hypoxic pulmonary artery endothelial cells (HPAECs) were detected by using quantitative real-time polymerase chain reaction (qRT-PCR) and fluorescence in situ hybridization (FISH). Western blot, Lactate dehydrogenase (LDH) release assay, Annexin V-FITC/PI double staining, Hoechst 33342/PI fluorescence staining and Caspase-1 activity assay were used to detect the role of FENDRR in HPAEC pyroptosis. The relationship between FENDRR and dynamin-related protein 1 (DRP1) was explored using bioinformatics analysis, Chromatin Isolation by RNA Purification (CHIRP), Electrophoretic mobility shift assay (EMSA) and Methylation-Specific PCR (MSP) assays. RNA immunoprecipitation (RIP) and m6A dot blot were used to detect the m6A modification levels of FENDRR. A hypoxia-induced mouse model of pulmonary hypertension (PH) was used to test preventive effect of conserved fragment TFO2 of FENDRR. RESULTS: We found that FENDRR was significantly downregulated in the nucleus of hypoxic HPAECs. FENDRR overexpression inhibited hypoxia-induced HPAEC pyroptosis. Additionally, DRP1 is a downstream target gene of FENDRR, and FENDRR formed an RNA-DNA triplex with the promoter of DRP1, which led to an increase in DRP1 promoter methylation that decreased the transcriptional level of DRP1. Notably, we illustrated that the m6A reader YTHDC1 plays an important role in m6A-modified FENDRR degradation. Additionally, conserved fragment TFO2 of FENDEE overexpression prevented HPH in vivo. CONCLUSION: In summary, our results demonstrated that m6A-induced decay of FENDRR promotes HPAEC pyroptosis by regulating DRP1 promoter methylation and thereby provides a novel potential target for HPH therapy.


Assuntos
Hipertensão Pulmonar , RNA Longo não Codificante , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Metilação de DNA , Células Endoteliais/metabolismo , Piroptose , Artéria Pulmonar , Hipertensão Pulmonar/genética , Hibridização in Situ Fluorescente , Hipóxia/genética , Dinaminas/genética , Dinaminas/metabolismo , Cromatina , Lactato Desidrogenases/genética , Lactato Desidrogenases/metabolismo , Caspases
8.
Mol Ther ; 29(4): 1411-1424, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33429084

RESUMO

Pulmonary artery smooth muscle cells (PASMCs) proliferation caused by hypoxia is an important pathological process of pulmonary hypertension (PH). Prevention of PASMCs proliferation can effectively reduce PH mortality. Long non-coding RNAs (lncRNAs) are involved in the proliferation process. Recent evidence has demonstrated that functional peptides encoded by lncRNAs play important roles in cell pathophysiological process. Our previous study has demonstrated that lnc-Rps4l with high coding ability mediates the PASMCs proliferation under hypoxic conditions. We hypothesize in this study that a lnc-Rps4l-encoded peptide is involved in hypoxic-induced PASMCs proliferation. The presence of peptide 40S ribosomal protein S4 X isoform-like (RPS4XL) encoded by lnc-Rps4l in PASMCs under hypoxic conditions was confirmed by bioinformatics, immunofluorescence, and immunohistochemistry. Inhibition of proliferation by the peptide RPS4XL was demonstrated in hypoxic PASMCs by MTT, bromodeoxyuridine (BrdU) incorporation, and immunofluorescence assays. By using the bioinformatics, coimmunoprecipitation (coIP), and mass spectrometry, RPS6 was identified to interact with RPS4XL. Furthermore, lnc-Rps4l-encoded peptide RPS4XL inhibited the RPS6 process via binding to RPS6 and inhibiting RPS6 phosphorylation at p-RPS6 (Ser240+Ser244) phosphorylation site. These results systematically elucidate the role and regulatory network of Rps4l-encoded peptide RPS4XL in PASMCs proliferation. These discoveries provide potential targets for early diagnosis and a leading compound for treatment of hypoxic PH.


Assuntos
Hipertensão Pulmonar/terapia , Peptídeos/genética , RNA Longo não Codificante/genética , Proteínas Ribossômicas/genética , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Camundongos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Peptídeos/farmacologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Remodelação Vascular/efeitos dos fármacos
9.
Sheng Li Xue Bao ; 74(6): 885-893, 2022 Dec 25.
Artigo em Zh | MEDLINE | ID: mdl-36594377

RESUMO

Vascular calcification, the deposition of calcium in the arterial wall, is often linked to increased stiffness of the vascular wall. Vascular calcification is one of the important factors for high morbidity and mortality of cardiovascular and cerebrovascular diseases, as well as an important biomarker in atherosclerotic cardiovascular events, stroke and peripheral vascular diseases. The mechanism of vascular calcification has not been fully elucidated. Recently, non-coding RNAs have been found to play an important role in the process of vascular calcification. In this paper, the main types of non-coding RNAs and their roles involved in vascular smooth muscle cell calcification are reviewed, including the changes of osteoblast-related proteins, calcification signaling pathways and intracellular Ca2+.


Assuntos
Músculo Liso Vascular , Calcificação Vascular , Humanos , Músculo Liso Vascular/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo
10.
Sheng Li Xue Bao ; 73(4): 646-656, 2021 Aug 25.
Artigo em Zh | MEDLINE | ID: mdl-34405220

RESUMO

Pulmonary arterial hypertension (PAH) is a rare disease with a complex aetiology characterized by elevated pulmonary artery resistance, which leads to progressive right ventricular failure and ultimately death. The aberrant metabolism of arachidonic acid in the pulmonary vasculature plays a central role in the pathogenesis of PAH. The levels of 15-lipoxygenase (15-LO) and 15-hydroxyeicosatetraenoic acid (15-HETE) are elevated in the pulmonary arterial endothelial cells (PAECs), pulmonary smooth muscle cells (PASMCs) and fibroblasts of PAH patients. Under hypoxia condition, 15-LO/15-HETE induces pulmonary artery contraction, promotes the proliferation of PAECs and PASMCs, inhibits apoptosis of PASMCs, promotes fibrosis of pulmonary vessels, and then leads to the occurrence of PAH. Here, we review the research progress on the relationship between 15-LO/15-HETE and hypoxic PAH, in order to clarify the significance of 15-LO/15-HETE in hypoxic PAH.


Assuntos
Araquidonato 15-Lipoxigenase , Hipertensão Arterial Pulmonar , Proliferação de Células , Células Cultivadas , Células Endoteliais , Humanos , Ácidos Hidroxieicosatetraenoicos , Hipóxia , Miócitos de Músculo Liso , Artéria Pulmonar
11.
J Mol Cell Cardiol ; 138: 23-33, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31733200

RESUMO

Pyroptosis is a pro-inflammatory form of programmed cell death, whose genesis directly depended on caspase-1 activation. Pulmonary hypertension (PH) is a disease characterized, in part, by vascular fibrosis. Up to now, there is no report on the relationship between pyroptosis and vascular fibrosis in PH. Here, we confirmed that pyroptosis had occurred in the media of pulmonary arteries in two PH rat models and hypoxic human pulmonary arterial smooth muscle cells (hPASMCs). Caspase-1 inhibition attenuated the pathogenesis of PH, as assessed by vascular remodeling, right ventricular systolic pressure, right ventricle hypertrophy and hemodynamic parameters of pulmonary vasculature. Moreover, caspase-1 inhibition suppressed pulmonary vascular fibrosis as demonstrated by Masson staining, as well as immunohistochemistry and Western blot analysis of fibrillar collagen. In addition, Programmed death-ligand 1 (PD-L1) was markedly increased in PH, which was regulated by the transcription factor STAT1. Furthermore, PD-L1 knockdown in hPASMCs repressed the onset of hypoxia-induced pyroptosis and fibrosis. Overall, these data identify a critical STAT1-dependent posttranscriptional modification that promotes PD-L1 expression in the pyroptosis of PASMCs to modulate pulmonary vascular fibrosis and accelerate the progression of PH.


Assuntos
Antígeno B7-H1/metabolismo , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/patologia , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Fibrose Pulmonar/complicações , Fibrose Pulmonar/patologia , Piroptose , Animais , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Hipóxia Celular , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/genética , Masculino , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fibrose Pulmonar/genética , Piroptose/efeitos dos fármacos , Piroptose/genética , Ratos Wistar , Fator de Transcrição STAT1/metabolismo
12.
J Cell Mol Med ; 24(11): 5984-5997, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32343493

RESUMO

Coronary heart disease (CHD) is one of the leading causes of heart-associated deaths worldwide. Conventional diagnostic techniques are ineffective and insufficient to diagnose CHD with higher accuracy. To use the circulating microRNAs (miRNAs) as non-invasive, specific and sensitive biomarkers for diagnosing of CHD, 203 patients with CHD and 144 age-matched controls (126 high-risk controls and 18 healthy volunteers) were enrolled in this study. The direct S-Poly(T)Plus method was used to identify novel miRNAs expression profile of CHD patients and to evaluate their clinical diagnostic value. This method is an RNA extraction-free and robust quantification method, which simplifies procedures, reduces variations, in particular increases the accuracy. Twelve differentially expressed miRNAs between CHD patients and high-risk controls were selected, and their performances were evaluated in validation set-1 with 96 plasma samples. Finally, six (miR-15b-5p, miR-29c-3p, miR-199a-3p, miR-320e, miR-361-5p and miR-378b) of these 12 miRNAs were verified in validation set-2 with a sensitivity of 92.8% and a specificity of 89.5%, and the AUC was 0.971 (95% confidence interval, 0.948-0.993, P < .001) in a large cohort for CHD patients diagnosis. Plasma fractionation indicated that only a small amount of miRNAs were assembled into EVs. Direct S-Poly(T)Plus method could be used for disease diagnosis and 12 unique miRNAs could be used for diagnosis of CHD.


Assuntos
Bioensaio , MicroRNA Circulante/sangue , Doença das Coronárias/diagnóstico , Doença das Coronárias/genética , Perfilação da Expressão Gênica , Poli T/metabolismo , Estudos de Casos e Controles , Análise por Conglomerados , Estudos de Coortes , Doença das Coronárias/sangue , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Fatores de Risco
13.
J Cell Mol Med ; 24(9): 5260-5273, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32227582

RESUMO

Piwi-interacting RNAs (piRNAs) are thought to be germline-specific and to be involved in maintaining genome stability during development. Recently, piRNA expression has been identified in somatic cells in diverse organisms. However, the roles of piRNAs in pulmonary arterial smooth muscle cell (PASMC) proliferation and the molecular mechanism underlying the hypoxia-regulated pathological process of pulmonary hypertension are not well understood. Using hypoxic animal models, cell and molecular biology, we obtained the first evidence that the expression of piRNA-63076 was up-regulated in hypoxia and was positively correlated with cell proliferation. Subsequently, we showed that acyl-CoA dehydrogenase (Acadm), which is negatively regulated by piRNA-63076 and interacts with Piwi proteins, was involved in hypoxic PASMC proliferation. Finally, Acadm inhibition under hypoxia was partly attributed to DNA methylation of the Acadm promoter region mediated by piRNA-63076. Overall, these findings represent invaluable resources for better understanding the role of epigenetics in pulmonary hypertension associated with piRNAs.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/citologia , RNA Interferente Pequeno/metabolismo , Acil-CoA Desidrogenase/genética , Animais , Sequência de Bases , Ciclo Celular/genética , Hipóxia Celular/genética , Proliferação de Células/genética , Metilação de DNA/genética , Regulação da Expressão Gênica , Masculino , Miócitos de Músculo Liso/citologia , Regiões Promotoras Genéticas/genética , RNA Interferente Pequeno/genética , Ratos Wistar
14.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L472-L482, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868509

RESUMO

Pulmonary hypertension (PH) is a clinically common malignant cardiovascular disease. Pyroptosis is a new form of inflammatory cell death that is involved in many disease processes. Glioma-associated oncogene family zinc finger 1 (GLI1) is a transcriptional activator that participates in many diseases, but its role has never been explored in inducing pyroptosis and the progress of PH. In this study, we used an animal model and cell molecular biology to determine the effect of GLI1 on chronic hypoxia-mediated PH progression and pulmonary artery smooth muscle cell (PASMC) pyroptosis. The major findings of the present study are as follows: Hypoxia induced aberrant expression of GLI1. The inhibition of GLI1 attenuated hypoxia-induced PH and PASMC pyroptosis. Meanwhile, GLI1 enhanced apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) expression by binding with its promoter. GLI1 may promote PASMC pyroptosis through ASC to affect the progression of PH. These findings may identify novel targets for molecular therapy of PH.


Assuntos
Hipertensão Pulmonar/patologia , Hipóxia/fisiopatologia , Músculo Liso Vascular/patologia , Artéria Pulmonar/patologia , Piroptose , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Artéria Pulmonar/metabolismo , Ratos , Ratos Wistar , Proteína GLI1 em Dedos de Zinco/genética
15.
Mol Ther ; 27(12): 2166-2181, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31477557

RESUMO

The expression and function of long noncoding RNAs (lncRNAs) in the development of hypoxic pulmonary hypertension (HPH), especially in the proliferation of pulmonary artery smooth muscle cells (PASMCs), are largely unknown. Herein, we examined the expression and role of lncRNA-maternally expressed gene 3 (lncRNA-MEG3) in HPH. lncRNA-MEG3 was significantly increased and primarily localized in the cytoplasm of hypoxic PASMCs. lncRNA-MEG3 knockdown by lung-specific delivery of small interfering RNAs (siRNAs) significantly inhibited the development of HPH in vivo. Silencing of lncRNA-MEG3 by siRNAs and gapmers attenuated proliferation and cell-cycle progression in both PASMCs from idiopathic pulmonary arterial hypertension (iPAH) patients (iPAH-PASMCs) and hypoxia-exposed PASMCs in vitro. Mechanistically, we found that lncRNA-MEG3 interacts with and leads to the degradation of microRNA-328-3p (miR-328-3p), leading to upregulation of insulin-like growth factor 1 receptor (IGF1R). Additionally, higher expression of lncRNA-MEG3 and IGF1R and lower expression of miR-328-3p were observed in iPAH-PASMCs and relevant HPH models. These data provide insights into the contribution of lncRNA-MEG3 to HPH. Upregulation of lncRNA-MEG3 sequesters cytoplasmic miR-328-3p, eventually leading to expression of IGF1R, revealing a regulatory mechanism by lncRNAs in hypoxia-induced PASMC proliferation.


Assuntos
Regulação da Expressão Gênica , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , MicroRNAs/genética , RNA Longo não Codificante/genética , Receptor IGF Tipo 1/metabolismo , Animais , Apoptose , Movimento Celular , Proliferação de Células , Células Cultivadas , Humanos , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 1/genética
17.
J Cell Physiol ; 234(6): 9255-9263, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30317624

RESUMO

Abnormal airway smooth muscle cells (ASMCs) proliferation is an important pathological process in airway remodeling contributes to increased mortality in asthma. Mitochondrial dynamics and metabolism have a central role in the maintenance of the cell function. In this study, lipopolysaccharide (LPS)-induced ASMCs proliferative model was used to investigate the effect of mitochondria on the proliferation of ASMCs and the possible mechanism. We used cell and molecular biology to determine the effect of dynamin-related protein 1 (Drp1) on LPS-mediated ASMCs cell cycle progression and glycolysis. The major findings of the current study are as follows: LPS promoted an increased mitochondrial fission and phosphorylation of Drp1 at Ser616 (p-Drp1 Ser616). LPS-induced ASMCs proliferation and cell cycle progression, which was significantly inhibited application of Drp1 RNA interfering. Glycolysis inhibitor 2-deoxyglucose (2-DG) depressed ASMCs proliferative process induced by LPS stimulation. LPS caused mitochondrial metabolism disorders and aerobic glycolysis in a dependent on Drp1 activation. These results indicated that Drp1 may function as a key factor in asthma airway remodeling by mediating ASMC proliferation and cell cycle acceleration through an effect on mitochondrial metabolic disturbance.


Assuntos
Dinaminas/metabolismo , Glicólise/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Aerobiose , Animais , Proliferação de Células/efeitos dos fármacos , Pulmão/citologia , Masculino , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Miócitos de Músculo Liso/efeitos dos fármacos , Interferência de RNA , Ratos Wistar
18.
Arterioscler Thromb Vasc Biol ; 38(3): 622-635, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29419407

RESUMO

OBJECTIVE: We explored mechanisms that alter mitochondrial structure and function in pulmonary endothelial cells (PEC) function after hyperoxia. APPROACH AND RESULTS: Mitochondrial structures of PECs exposed to hyperoxia or normoxia were visualized and mitochondrial fragmentation quantified. Expression of pro-fission or fusion proteins or autophagy-related proteins were assessed by Western blot. Mitochondrial oxidative state was determined using mito-roGFP. Tetramethylrhodamine methyl ester estimated mitochondrial polarization in treatment groups. The role of mitochondrially derived reactive oxygen species in mt-fragmentation was investigated with mito-TEMPOL and mitochondrial DNA (mtDNA) damage studied by using ENDO III (mt-tat-endonuclease III), a protein that repairs mDNA damage. Drp-1 (dynamin-related protein 1) was overexpressed or silenced to test the role of this protein in cell survival or transwell resistance. Hyperoxia increased fragmentation of PEC mitochondria in a time-dependent manner through 48 hours of exposure. Hyperoxic PECs exhibited increased phosphorylation of Drp-1 (serine 616), decreases in Mfn1 (mitofusion protein 1), but increases in OPA-1 (optic atrophy 1). Pro-autophagy proteins p62 (LC3 adapter-binding protein SQSTM1/p62), PINK-1 (PTEN-induced putative kinase 1), and LC3B (microtubule-associated protein 1A/1B-light chain 3) were increased. Returning cells to normoxia for 24 hours reversed the increased mt-fragmentation and changes in expression of pro-fission proteins. Hyperoxia-induced changes in mitochondrial structure or cell survival were mitigated by antioxidants mito-TEMPOL, Drp-1 silencing, or inhibition or protection by the mitochondrial endonuclease ENDO III. Hyperoxia induced oxidation and mitochondrial depolarization and impaired transwell resistance. Decrease in resistance was mitigated by mito-TEMPOL or ENDO III and reproduced by overexpression of Drp-1. CONCLUSIONS: Because hyperoxia evoked mt-fragmentation, cell survival and transwell resistance are prevented by ENDO III and mito-TEMPOL and Drp-1 silencing, and these data link hyperoxia-induced mt-DNA damage, Drp-1 expression, mt-fragmentation, and PEC dysfunction.


Assuntos
Células Endoteliais/efeitos dos fármacos , Hiperóxia/metabolismo , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Oxigênio/toxicidade , Artéria Pulmonar/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Dinaminas/genética , Dinaminas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Hiperóxia/genética , Hiperóxia/patologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Estresse Oxidativo/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/ultraestrutura , Ratos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
19.
J Pharmacol Sci ; 139(3): 158-165, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30770282

RESUMO

Abnormal autophagy plays critical roles in the structure and function of the pulmonary vasculature. Cyclophilin A (CyPA) can be secreted from cells in response to hypoxia and oxidative stress, which are involved in inducing autophagy and regulating the function of endothelial cells in pulmonary arterial hypertension. Honokiol is a small molecule natural compound; it has many bioactivities, such as antitumor, anti-inflammatory, antioxidant and antiangiogenic properties, but how honokiol mediates autophagy in pulmonary arterial hypertension is unclear. Rat' lungs gavaged with honokiol were examined for autophagy via western blot and fluorescence microscopy. In addition, western blot, quantitative RT-PCR and immunofluorescence were employed to test the expression of CyPA and autophagy markers in pulmonary artery endothelial cells (PAECs). Small interfering RNA targeting CyPA (si-CyPA) was used to knockdown the expression of CyPA, and then autophagy was tested with mRFP-GFP-LC3 fluorescence microscopy and western blot. We found that honokiol could reduce the expression of CyPA and autophagy markers in vivo and in vitro. Furthermore, autophagy was also down-regulated by si-CyPA. Taken together, we revealed a novel mechanism by which honokiol regulates autophagy. The results revealed that honokiol can alleviate autophagy and pulmonary arterial hypertension regulated by CyPA in PAECs.


Assuntos
Autofagia/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Ciclofilina A/metabolismo , Hipertensão Pulmonar/tratamento farmacológico , Lignanas/farmacologia , Animais , Western Blotting , Bovinos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Microscopia de Fluorescência , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Pharmacol Sci ; 141(2): 97-105, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31640920

RESUMO

Pulmonary arterial hypertension (PAH) is defined as elevation of mean pulmonary arterial pressure to ≥25 mmHg within the low pressure pulmonary circulatory system. PAH is characterized by obstructive vascular remodeling, partially due to excessive pulmonary arterial smooth muscle cell (PASMC) proliferation. Puerarin is a natural flavonoid isolated from the herb Radix puerariae, which has been widely used for the treatment of cardiovascular and cerebrovascular disorders and diabetes. However, how puerarin mediates autophagy in the progression of pulmonary vascular remodeling is unclear. In this study, we explored the effects of puerarin in a hypoxic pulmonary hypertension (PH) rat model using immunohistochemistry, and morphometric analyses of right ventricle. In addition, cell counting kit 8 assay, western blotting and flow cytometry were employed to test cell proliferation in PASMCs, and then autophagy was tested with mRFP-GFP-LC3 fluorescence microscopy and Western blot. We found that puerarin could alleviate hypoxia-induced PH in rats and improved pulmonary histopathology, and also reduced the expression of autophagy markers in vivo and in vitro. Moreover, puerarin also ameliorated hypoxia-induced PASMC proliferation in an autophagy-dependent manner. Overall, these findings demonstrated that puerarin could prevent hypoxia-induced PH in rats, possibly via reducing autophagy and suppressing cell proliferation.


Assuntos
Autofagia/efeitos dos fármacos , Hipertensão Pulmonar/prevenção & controle , Isoflavonas/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Isoflavonas/metabolismo , Pulmão/metabolismo , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Artéria Pulmonar/patologia , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA