Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Pharmacol Exp Ther ; 362(1): 146-160, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28473457

RESUMO

Potent and selective antagonists of the voltage-gated sodium channel NaV1.7 represent a promising avenue for the development of new chronic pain therapies. We generated a small molecule atropisomer quinolone sulfonamide antagonist AMG8379 and a less active enantiomer AMG8380. Here we show that AMG8379 potently blocks human NaV1.7 channels with an IC50 of 8.5 nM and endogenous tetrodotoxin (TTX)-sensitive sodium channels in dorsal root ganglion (DRG) neurons with an IC50 of 3.1 nM in whole-cell patch clamp electrophysiology assays using a voltage protocol that interrogates channels in a partially inactivated state. AMG8379 was 100- to 1000-fold selective over other NaV family members, including NaV1.4 expressed in muscle and NaV1.5 expressed in the heart, as well as TTX-resistant NaV channels in DRG neurons. Using an ex vivo mouse skin-nerve preparation, AMG8379 blocked mechanically induced action potential firing in C-fibers in both a time-dependent and dose-dependent manner. AMG8379 similarly reduced the frequency of thermally induced C-fiber spiking, whereas AMG8380 affected neither mechanical nor thermal responses. In vivo target engagement of AMG8379 in mice was evaluated in multiple NaV1.7-dependent behavioral endpoints. AMG8379 dose-dependently inhibited intradermal histamine-induced scratching and intraplantar capsaicin-induced licking, and reversed UVB radiation skin burn-induced thermal hyperalgesia; notably, behavioral effects were not observed with AMG8380 at similar plasma exposure levels. AMG8379 is a potent and selective NaV1.7 inhibitor that blocks sodium current in heterologous cells as well as DRG neurons, inhibits action potential firing in peripheral nerve fibers, and exhibits pharmacodynamic effects in translatable models of both itch and pain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Neurônios/efeitos dos fármacos , Dor/prevenção & controle , Dor/psicologia , Técnicas de Patch-Clamp , Prurido/prevenção & controle , Prurido/psicologia , Quinolonas/farmacologia , Bibliotecas de Moléculas Pequenas , Estereoisomerismo , Sulfonamidas/farmacologia
2.
J Pharmacol Exp Ther ; 356(1): 223-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26559125

RESUMO

Therapeutic agents that block the calcitonin gene-related peptide (CGRP) signaling pathway are a highly anticipated and promising new drug class for migraine therapy, especially after reports that small-molecule CGRP-receptor antagonists are efficacious for both acute migraine treatment and migraine prevention. Using XenoMouse technology, we successfully generated AMG 334, a fully human monoclonal antibody against the CGRP receptor. Here we show that AMG 334 competes with [(125)I]-CGRP binding to the human CGRP receptor, with a Ki of 0.02 nM. AMG 334 fully inhibited CGRP-stimulated cAMP production with an IC50 of 2.3 nM in cell-based functional assays (human CGRP receptor) and was 5000-fold more selective for the CGRP receptor than other human calcitonin family receptors, including adrenomedullin, calcitonin, and amylin receptors. The potency of AMG 334 at the cynomolgus monkey (cyno) CGRP receptor was similar to that at the human receptor, with an IC50 of 5.7 nM, but its potency at dog, rabbit, and rat receptors was significantly reduced (>5000-fold). Therefore, in vivo target coverage of AMG 334 was assessed in cynos using the capsaicin-induced increase in dermal blood flow model. AMG 334 dose-dependently prevented capsaicin-induced increases in dermal blood flow on days 2 and 4 postdosing. These results indicate AMG 334 is a potent, selective, full antagonist of the CGRP receptor and show in vivo dose-dependent target coverage in cynos. AMG 334 is currently in clinical development for the prevention of migraine.


Assuntos
Anticorpos Monoclonais/farmacologia , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Animais , Anticorpos Monoclonais Humanizados , Ligação Competitiva/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/farmacologia , AMP Cíclico/biossíntese , Cães , Relação Dose-Resposta a Droga , Humanos , Macaca fascicularis , Camundongos , Transtornos de Enxaqueca/prevenção & controle , Coelhos , Ratos , Receptores da Calcitonina/efeitos dos fármacos , Receptores da Calcitonina/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Pele/irrigação sanguínea
3.
Mol Pain ; 8: 36, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22571355

RESUMO

BACKGROUND: Transient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a 'cold temperature sensor' in vivo. Although it is known that agonists of this 'cold temperature sensor', such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation. RESULTS: We characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98°C). Since thermoregulation is a homeostatic process that maintains Tb about 37°C, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards. CONCLUSIONS: The data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8's role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics.


Assuntos
Regulação da Temperatura Corporal , Naftiridinas/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Regulação da Temperatura Corporal/efeitos dos fármacos , Células CHO , Cricetinae , Relação Dose-Resposta a Droga , Concentração Inibidora 50 , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Moduladores de Transporte de Membrana/química , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPM/antagonistas & inibidores
4.
J Med Chem ; 64(6): 3427-3438, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33715378

RESUMO

Inhibition of the pituitary adenylate cyclase 1 receptor (PAC1R) is a novel mechanism that could be used for abortive treatment of acute migraine. Our research began with comparative analysis of known PAC1R ligand scaffolds, PACAP38 and Maxadilan, which resulted in the selection of des(24-42) Maxadilan, 6, as a starting point. C-terminal modifications of 6 improved the peptide metabolic stability in vitro and in vivo. SAR investigations identified synergistic combinations of amino acid replacements that significantly increased the in vitro PAC1R inhibitory activity of the analogs to the pM IC90 range. Our modifications further enabled deletion of up to six residues without impacting potency, thus improving peptide ligand binding efficiency. Analogs 17 and 18 exhibited robust in vivo efficacy in the rat Maxadilan-induced increase in blood flow (MIIBF) pharmacodynamic model at 0.3 mg/kg subcutaneous dosing. The first cocrystal structure of a PAC1R antagonist peptide (18) with PAC1R extracellular domain is reported.


Assuntos
Circulação Sanguínea/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/antagonistas & inibidores , Animais , Humanos , Proteínas de Insetos/farmacologia , Masculino , Camundongos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Simulação de Acoplamento Molecular , Peptídeos/farmacocinética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Vasodilatadores/farmacologia
5.
Pain ; 161(7): 1670-1681, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32142016

RESUMO

Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) may play an important role in primary headaches. Preclinical evidence suggests that PACAP38 modulates trigeminal nociceptive activity mainly through PAC1 receptors while clinical studies report that plasma concentrations of PACAP38 are elevated in spontaneous attacks of cluster headache and migraine and normalize after treatment with sumatriptan. Intravenous infusion of PACAP38 induces migraine-like attacks in migraineurs and cluster-like attacks in cluster headache patients. A rodent-specific PAC1 receptor antibody Ab181 was developed, and its effect on nociceptive neuronal activity in the trigeminocervical complex was investigated in vivo in an electrophysiological model relevant to primary headaches. Ab181 is potent and selective at the rat PAC1 receptor and provides near-maximum target coverage at 10 mg/kg for more than 48 hours. Without affecting spontaneous neuronal activity, Ab181 effectively inhibits stimulus-evoked activity in the trigeminocervical complex. Immunohistochemical analysis revealed its binding in the trigeminal ganglion and sphenopalatine ganglion but not within the central nervous system suggesting a peripheral site of action. The pharmacological approach using a specific PAC1 receptor antibody could provide a novel mechanism with a potential clinical efficacy in the treatment of primary headaches.


Assuntos
Transtornos de Enxaqueca , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Cefaleia/induzido quimicamente , Cefaleia/tratamento farmacológico , Humanos , Nociceptividade , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Ratos
6.
J Neurosci ; 27(13): 3366-74, 2007 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-17392452

RESUMO

The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing various chemotypes cause an increase in body temperature (hyperthermia), identifying a potential issue for their clinical development. Peripheral restriction of antagonists did not eliminate hyperthermia, suggesting that the site of action is predominantly outside of the blood-brain barrier. Antagonists that are ineffective against proton activation also caused hyperthermia, indicating that blocking capsaicin and heat activation of TRPV1 is sufficient to produce hyperthermia. All TRPV1 antagonists evaluated here caused hyperthermia, suggesting that TRPV1 is tonically activated in vivo and that TRPV1 antagonism and hyperthermia are not separable. TRPV1 antagonists caused hyperthermia in multiple species (rats, dogs, and monkeys), demonstrating that TRPV1 function in thermoregulation is conserved from rodents to primates. Together, these results indicate that tonic TRPV1 activation regulates body temperature.


Assuntos
Acrilamidas/farmacologia , Regulação da Temperatura Corporal/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sulfonamidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/fisiologia , Tioureia/análogos & derivados , Animais , Benzotiazóis/farmacologia , Barreira Hematoencefálica/metabolismo , Células CHO , Capsaicina , Células Cultivadas , Sequência Conservada , Cricetinae , Cricetulus , Cães , Feminino , Febre/induzido quimicamente , Febre/fisiopatologia , Humanos , Hipotermia/induzido quimicamente , Hipotermia/fisiopatologia , Macaca fascicularis , Masculino , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Tioureia/farmacologia
7.
J Pharmacol Exp Ther ; 326(1): 218-29, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18420600

RESUMO

Antagonists of the vanilloid receptor TRPV1 (transient receptor potential vanilloid type 1) have been reported to produce antihyperalgesic effects in animal models of pain. These antagonists, however, also caused concomitant hyperthermia in rodents, dogs, monkeys, and humans. Antagonist-induced hyperthermia was not observed in TRPV1 knockout mice, suggesting that the hyperthermic effect is exclusively mediated through TRPV1. Since antagonist-induced hyperthermia is considered a hurdle for developing TRPV1 antagonists as therapeutics, we investigated the possibility of eliminating hyperthermia while maintaining antihyperalgesia. Here, we report four potent and selective TRPV1 modulators with unique in vitro pharmacology profiles (profiles A through D) and their respective effects on body temperature. We found that profile C modulator, (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)acrylamide (AMG8562), blocks capsaicin activation of TRPV1, does not affect heat activation of TRPV1, potentiates pH 5 activation of TRPV1 in vitro, and does not cause hyperthermia in vivo in rats. We further profiled AMG8562 in an on-target (agonist) challenge model, rodent pain models, and tested for its side effects. We show that AMG8562 significantly blocks capsaicin-induced flinching behavior, produces statistically significant efficacy in complete Freund's adjuvant- and skin incision-induced thermal hyperalgesia, and acetic acid-induced writhing models, with no profound effects on locomotor activity. Based on the data shown here, we conclude that it is feasible to modulate TRPV1 in a manner that does not cause hyperthermia while maintaining efficacy in rodent pain models.


Assuntos
Acrilamidas/química , Acrilamidas/farmacologia , Analgésicos/farmacologia , Febre , Hiperalgesia/tratamento farmacológico , Piperidinas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/fisiologia , Acrilamidas/farmacocinética , Animais , Temperatura Corporal/efeitos dos fármacos , Temperatura Corporal/fisiologia , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Febre/induzido quimicamente , Febre/fisiopatologia , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Piperidinas/química , Piperidinas/farmacocinética , Ratos , Ratos Sprague-Dawley
8.
J Med Chem ; 60(14): 5990-6017, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28324649

RESUMO

Because of its strong genetic validation, NaV1.7 has attracted significant interest as a target for the treatment of pain. We have previously reported on a number of structurally distinct bicyclic heteroarylsulfonamides as NaV1.7 inhibitors that demonstrate high levels of selectivity over other NaV isoforms. Herein, we report the discovery and optimization of a series of atropisomeric quinolinone sulfonamide inhibitors [ Bicyclic sulfonamide compounds as sodium channel inhibitors and their preparation . WO 2014201206, 2014 ] of NaV1.7, which demonstrate nanomolar inhibition of NaV1.7 and exhibit high levels of selectivity over other sodium channel isoforms. After optimization of metabolic and pharmacokinetic properties, including PXR activation, CYP2C9 inhibition, and CYP3A4 TDI, several compounds were advanced into in vivo target engagement and efficacy models. When tested in mice, compound 39 (AM-0466) demonstrated robust pharmacodynamic activity in a NaV1.7-dependent model of histamine-induced pruritus (itch) and additionally in a capsaicin-induced nociception model of pain without any confounding effect in open-field activity.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Quinolonas/química , Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Capsaicina , Linhagem Celular , Cães , Histamina , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Dor/induzido quimicamente , Dor/prevenção & controle , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Prurido/induzido quimicamente , Prurido/prevenção & controle , Quinolonas/administração & dosagem , Quinolonas/síntese química , Quinolonas/farmacocinética , Quinolonas/farmacologia , Ratos , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
9.
J Med Chem ; 49(12): 3719-42, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16759115

RESUMO

The vanilloid receptor-1 (VR1 or TRPV1) is a membrane-bound, nonselective cation channel that is predominantly expressed by peripheral neurons sensing painful stimuli. TRPV1 antagonists produce antihyperalgesic effects in animal models of inflammatory and neuropathic pain. Herein, we describe the synthesis and the structure-activity relationships of a series of 2-(4-pyridin-2-ylpiperazin-1-yl)-1H-benzo[d]imidazoles as novel TRPV1 antagonists. Compound 46ad was among the most potent analogues in this series. This compound was orally bioavailable in rats and was efficacious in blocking capsaicin-induced flinch in rats in a dose-dependent manner. Compound 46ad also reversed thermal hyperalgesia in a model of inflammatory pain, which was induced by complete Freund's adjuvant (CFA).


Assuntos
Analgésicos/síntese química , Benzimidazóis/síntese química , Piperazinas/síntese química , Canais de Cátion TRPV/antagonistas & inibidores , Administração Oral , Analgésicos/química , Analgésicos/farmacologia , Animais , Benzimidazóis/química , Benzimidazóis/farmacologia , Disponibilidade Biológica , Células CHO , Cálcio/metabolismo , Capsaicina/farmacologia , Cricetinae , Cricetulus , Adjuvante de Freund , Temperatura Alta , Concentração de Íons de Hidrogênio , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Medição da Dor , Piperazinas/química , Piperazinas/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/antagonistas & inibidores , Estereoisomerismo , Relação Estrutura-Atividade
10.
J Pharmacol Exp Ther ; 322(1): 282-7, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17431136

RESUMO

A considerable body of evidence implicates endogenous nerve growth factor (NGF) in conditions in which pain is a prominent feature, including neuropathic pain. However, previous studies of NGF antagonism in animal models of neuropathic pain have examined only the prevention of hyperalgesia and allodynia after injury, whereas the more relevant issue is whether treatment can provide relief of established pain, particularly without tolerance. In the current work, we studied the effects of potent, neutralizing anti-NGF antibodies on the reversal of tactile allodynia and thermal hyperalgesia in established models of neuropathic and inflammatory pain in rats and mice. In the complete Freund's adjuvant-induced hind-paw inflammation, spinal nerve ligation and streptozotocin-induced neuropathic pain models, a single intraperitoneal injection of a polyclonal anti-NGF antibody reversed established tactile allodynia from approximately day 3 to day 7 after treatment. Effects on thermal hyperalgesia were variable with a significant effect observed only in the spinal nerve ligation model. In the mouse chronic constriction injury (CCI) model, a mouse monoclonal anti-NGF antibody reversed tactile allodynia when administered 2 weeks after surgery. Repeated administration of this antibody to CCI mice for 3 weeks produced a sustained reversal (days 4 to 21) of tactile allodynia that returned 5 days after the end of dosing. In conclusion, NGF seems to play a critical role in models of established neuropathic and inflammatory pain in both rats and mice, with no development of tolerance to antagonism. Antagonists of NGF, such as fully human monoclonal anti-NGF antibodies, may have therapeutic utility in analogous human pain conditions.


Assuntos
Anticorpos/uso terapêutico , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Fator de Crescimento Neural/antagonistas & inibidores , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Tolerância a Medicamentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/fisiologia , Ratos , Ratos Sprague-Dawley
11.
J Pharmacol Exp Ther ; 323(1): 128-37, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17652633

RESUMO

Capsaicin, the active ingredient in some pain-relieving creams, is an agonist of a nonselective cation channel known as the transient receptor potential vanilloid type 1 (TRPV1). The pain-relieving mechanism of capsaicin includes desensitization of the channel, suggesting that TRPV1 antagonism may be a viable pain therapy approach. In agreement with the above notion, several TRPV1 antagonists have been reported to act as antihyperalgesics. Here, we report the in vitro and in vivo characterization of a novel and selective TRPV1 antagonist, N-(4-[6-(4-trifluoromethyl-phenyl)-pyrimidin-4-yloxy]-benzothiazol-2-yl)-acetamide I (AMG 517), and compare its pharmacology with that of a closely related analog, tert-butyl-2-(6-([2-(acetylamino)-1,3-benzothiazol-4-yl]oxy)pyrimidin-4-yl)-5-(trifluoromethyl)phenylcarbamate (AMG8163). Both AMG 517 and AMG8163 potently and completely antagonized capsaicin, proton, and heat activation of TRPV1 in vitro and blocked capsaicin-induced flinch in rats in vivo. To support initial clinical investigations, AMG 517 was evaluated in a comprehensive panel of toxicology studies that included in vivo assessments in rodents, dogs, and monkeys. The toxicology studies indicated that AMG 517 was generally well tolerated; however, transient increases in body temperature (hyperthermia) were observed in all species after AMG 517 dosing. To further investigate this effect, we tested and showed that the antipyretic, acetaminophen, suppressed the hyperthermia caused by TRPV1 blockade. We also showed that repeated administration of TRPV1 antagonists attenuated the hyperthermia response, whereas the efficacy in capsaicin-induced flinch model was maintained. In conclusion, these studies suggest that the transient hyperthermia elicited by TRPV1 blockade may be manageable in the development of TRPV1 antagonists as therapeutic agents. However, the impact of TRPV1 antagonist-induced hyperthermia on their clinical utility is still unknown.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Benzotiazóis/uso terapêutico , Febre/tratamento farmacológico , Dor/tratamento farmacológico , Pirimidinas/uso terapêutico , Canais de Cátion TRPV/antagonistas & inibidores , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Animais , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Benzotiazóis/farmacologia , Temperatura Corporal/efeitos dos fármacos , Células CHO , Capsaicina/farmacologia , Cricetinae , Cricetulus , Modelos Animais de Doenças , Esquema de Medicação , Desenho de Fármacos , Feminino , Febre/metabolismo , Adjuvante de Freund/farmacologia , Macaca fascicularis , Masculino , Estrutura Molecular , Dor/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/química , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Telemetria
12.
J Pharmacol Exp Ther ; 313(1): 474-84, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15615864

RESUMO

The vanilloid receptor 1 (VR1 or TRPV1) is a membrane-bound, nonselective cation channel expressed by peripheral sensory neurons. TRPV1 antagonists produce antihyperalgesic effects in animal models of inflammatory and neuropathic pain. Here, we describe the in vitro and in vivo pharmacology of a novel TRPV1 antagonist, AMG 9810, (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide. AMG 9810 is a competitive antagonist of capsaicin activation (IC50 value for human TRPV1, 24.5 +/- 15.7 nM; rat TRPV1, 85.6 +/- 39.4 nM) and blocks all known modes of TRPV1 activation, including protons (IC50 value for rat TRPV1, 294 +/- 192 nM; human TRPV1, 92.7 +/- 72.8 nM), heat (IC50 value for rat TRPV1, 21 +/- 17 nM; human TRPV1, 15.8 +/- 10.8 nM), and endogenous ligands, such as anandamide, N-arachidonyl dopamine, and oleoyldopamine. AMG 9810 blocks capsaicin-evoked depolarization and calcitonin gene-related peptide release in cultures of rat dorsal root ganglion primary neurons. Screening of AMG 9810 against a panel of G protein-coupled receptors and ion channels indicated selectivity toward TRPV1. In vivo, AMG 9810 is effective at preventing capsaicin-induced eye wiping in a dose-dependent manner, and it reverses thermal and mechanical hyperalgesia in a model of inflammatory pain induced by intraplantar injection of complete Freund's adjuvant. At effective doses, AMG 9810 did not show any significant effects on motor function, as measured by open field locomotor activity and motor coordination tests. AMG 9810 is the first cinnamide TRPV1 antagonist reported to block capsaicin-induced eye wiping behavior and reverse hyperalgesia in an animal model of inflammatory pain.


Assuntos
Acrilamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Hiperalgesia/tratamento farmacológico , Receptores de Droga/antagonistas & inibidores , Animais , Comportamento Animal/efeitos dos fármacos , Células CHO , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/antagonistas & inibidores , Células Cultivadas , Cricetinae , Adjuvante de Freund , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Temperatura Alta , Humanos , Hiperalgesia/induzido quimicamente , Inflamação/complicações , Inflamação/patologia , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medição da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Prótons , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA