Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 34(11): 4472-4494, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35959993

RESUMO

Drought is a major environmental factor limiting wheat production worldwide. However, the genetic components underlying wheat drought tolerance are largely unknown. Here, we identify a DREB transcription factor gene (TaDTG6-B) by genome-wide association study that is tightly associated with drought tolerance in wheat. Candidate gene association analysis revealed that a 26-bp deletion in the TaDTG6-B coding region induces a gain-of-function for TaDTG6-BDel574, which exhibits stronger transcriptional activation, protein interactions, and binding activity to dehydration-responsive elements (DRE)/CRT cis-elements than the TaDTG6-BIn574 encoded by the allele lacking the deletion, thus conferring greater drought tolerance in wheat seedlings harboring this variant. Knockdown of TaDTG6-BDel574 transcripts attenuated drought tolerance in transgenic wheat, whereas its overexpression resulted in enhanced drought tolerance without accompanying phenotypic abnormalities. Furthermore, the introgression of the TaDTG6-BDel574 elite allele into drought-sensitive cultivars improved their drought tolerance, thus providing a valuable genetic resource for wheat breeding. We also identified 268 putative target genes that are directly bound and transcriptionally regulated by TaDTG6-BDel574. Further analysis showed that TaDTG6-BDel574 positively regulates TaPIF1 transcription to enhance wheat drought tolerance. These results describe the genetic basis and accompanying mechanism driving phenotypic variation in wheat drought tolerance, and provide a novel genetic resource for crop breeding programs.


Assuntos
Secas , Triticum , Triticum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Alelos , Estudo de Associação Genômica Ampla , Mutação com Ganho de Função , Melhoramento Vegetal , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética
2.
Plant Cell Environ ; 45(8): 2306-2323, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35545896

RESUMO

Stomata are important channels for the control of gas exchange between plants and the atmosphere. To examine the genetic architecture of wheat stomatal index, we performed a genome-wide association study (GWAS) using a panel of 539 wheat accessions and 450 678 polymorphic single nucleotide polymorphisms (SNPs) that were detected using wheat-specific 660K SNP array. A total of 130 SNPs were detected to be significantly associated with stomatal index in both leaf surfaces of wheat seedlings. These significant SNPs were distributed across 16 chromosomes and involved 2625 candidate genes which participate in stress response, metabolism and cell/organ development. Subsequent bulk segregant analysis (BSA), combined with GWAS identified one major haplotype on chromosome 2A, that is responsible for stomatal index on the abaxial leaf surface. Candidate gene association analysis revealed that genetic variation in the promoter region of the hexokinase gene TaHXK3-2A was significantly associated with the stomatal index. Moreover, transgenic analysis confirmed that TaHXK3-2A overexpression in wheat decreased the size of leaf pavement cells but increased stomatal density through the glucose metabolic pathway, resulting in drought sensitivity among TaHXK3-2A transgenic lines due to an increased transpiration rate. Taken together, these results provide valuable insights into the genetic control of the stomatal index in wheat seedlings.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Secas , Polimorfismo de Nucleotídeo Único/genética , Plântula/genética , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA