Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mol Model ; 29(2): 33, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622451

RESUMO

CONTEXT: Lignin has an immense potential for the production of lignin-based functional materials. In this work, effect of 2-chloro-ethyltrimethyl ammonium chloride (AC)-grafted alkali lignin (AL) on the morphologies in water was investigated by dissipative particle dynamics (DPD) simulations. The results showed that AL molecules formed spherical micelles, but the corresponding phenylpropane units of AL were randomly distributed in spherical micelles. However, AC-grafted modification of phenolic hydroxyl groups in AL led to the formation of multilamellar spherical micelles. The formation of multilamellar spherical micelles of AL mainly went through four stages: small clusters, larger aggregates with a core-shell structure, trilaminar, and multilamellar spherical micelles. AL molecules resulted in dimethomorph molecules being randomly distributed in the spherical micelle, while the dimethomorph molecules were perfectly entrapped into the spherical micelles of AC-grafted AL. Various molecular weights of AL had no effect on the formation and size of multilamellar spherical micelles. With increasing the content of AC-grafted AL, small clusters, multilamellar spherical micelles, tube-like, and lamellar aggregates were observed successively. This work highlights the potential of lignin to prepare monodispersed lignin-based functional colloidal spheres. METHODS: Coarse-grained beads were performed energy minimization, geometric optimization, NPT ensemble (298 K and 1.0 bar), and NVT ensemble (298 K) calculations. DPD simulations were carried out at 300,000 steps in a 30×30×30 Rc3 cubic box with Materials Studio 7.0 program.


Assuntos
Lignina , Micelas , Água/química
2.
Bioresour Technol ; 218: 718-22, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27420159

RESUMO

A new two-step lignin depolymerization strategy was developed, in which the benzylic alcohols in lignin was methylated under microwave irradiation, followed by a hydrogenolysis for the cleavage of ßO4 bond with Pd/C as the catalyst. The results showed that an efficient and selective catalytic methylation of benzylic alcohols was achieved with various lignin model compounds, and the acidic environment promoted the methylation of benzylic alcohol. Methylation of benzylic alcohol increased the ßO4 bond cleavage rate by 55.9%, and improved products selectivity. Preliminary study of lignin depolymerization illustrated that methylation pretreatment of benzylic alcohols facilitated lignin depolymerization to produce aromatic monomers and reduced the oxygen content of aromatic monomers.


Assuntos
Álcoois Benzílicos/química , Lignina/química , Micro-Ondas , Polimerização , Catálise/efeitos da radiação , Lignina/efeitos da radiação , Metilação/efeitos da radiação , Oxigênio/química , Polimerização/efeitos dos fármacos , Polimerização/efeitos da radiação , Triticum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA