Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Small ; 19(35): e2300392, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37127883

RESUMO

Second near infrared (NIR-II, 1000-1700 nm) fluorescence lifetime imaging is a powerful tool for biosensing, anti-counterfeiting, and multiplex imaging. However, the low photoluminescence quantum yield (PLQY) of fluorescence probes in NIR-II region limits its data collecting efficiency and accuracy, especially in multiplex molecular imaging in vivo. To solve this problem, lanthanide-doped nanoparticles (NPs) ß-NaErF4 : 2%Ce@NaYbF4 @NaYF4 with high PLQY and tunable PL lifetime through multi-ion doping and core-shell structural design, are presented. The obtained internal PLQY can reach up to 50.1% in cyclohexane and 9.2% in water under excitation at 980 nm. Inspired by the above results, a fast NIR-II fluorescence lifetime imaging of whole-body vascular in mice is successfully performed by using the homebuilt fluorescence lifetime imaging system, which reveals a murine abdominal capillary network with low background. A further demonstration of fluorescence lifetime multiplex imaging is carried out in molecular imaging of atherosclerosis cells and different organs in vivo through NPs conjugating with specific peptides and different injection modalities, respectively. These results demonstrate that the high PLQY NPs combined with the homebuilt fluorescence lifetime imaging system can realize a fast and high signal-to-noise fluorescence lifetime imaging; thus, opening a road for multiplex molecular imaging of atherosclerosis.


Assuntos
Aterosclerose , Elementos da Série dos Lantanídeos , Nanopartículas , Animais , Camundongos , Elementos da Série dos Lantanídeos/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Imagem Óptica , Nanopartículas/química
2.
Inorg Chem ; 62(28): 11112-11120, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37395531

RESUMO

Recent decades have witnessed a major development in broadband near-infrared (NIR)-emitting phosphors because of their potential applications in real-time nondestructive examination. These applications require the emission spectra of phosphors to be as broad as possible for efficient performance. Therefore, a blue-light excited LiInF4: Cr3+ phosphor with a NIR emission covering 700-1400 nm is successfully synthesized. Under 470 nm excitation, it shows broadband emission peaked at 980 nm with the full-width at half maximum of 210 nm. The structure and crystal field environment are investigated in detail, and the LiInF4: Cr3+ possesses a weak crystal field strength and strong electron-phonon coupling. An efficient NIR phosphor-converted light-emitting diode (pc-LED) is fabricated by the prepared LiInF4: Cr3+ phosphor and commercial blue diode chip, generating a NIR radiant flux of 5.54 mW at 150 mA drive current. Finally, the NIR pc-LED is successfully applied to identify the blood vessel distribution of the hand. This work suggests the potential of LiInF4: Cr3+ phosphor in applications.

3.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296562

RESUMO

In recent decades, heparin, as the most important anticoagulant drug, has been widely used in clinical settings to prevent and treat thrombosis in a variety of diseases. However, with in-depth research, the therapeutic potential of heparin is being explored beyond anticoagulation. To date, heparin and its derivatives have been tested in the protection against and repair of inflammatory, antitumor, and cardiovascular diseases. It has also been explored as an antiangiogenic, preventive, and antiviral agent for atherosclerosis. This review focused on the new and old applications of heparin and discussed the potential mechanisms explaining the biological diversity of heparin.


Assuntos
Doenças Cardiovasculares , Trombose , Humanos , Heparina/farmacologia , Heparina/uso terapêutico , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Trombose/tratamento farmacológico , Trombose/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico , Antivirais/uso terapêutico
4.
Molecules ; 26(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34500836

RESUMO

The dynamics of protein-water fluctuations are of biological significance. Molecular dynamics simulations were performed in order to explore the hydration dynamics of staphylococcal nuclease (SNase) at different temperatures and mutation levels. A dynamical transition in hydration water (at ~210 K) can trigger larger-amplitude fluctuations of protein. The protein-water hydrogen bonds lost about 40% in the total change from 150 K to 210 K, while the Mean Square Displacement increased by little. The protein was activated when the hydration water in local had a comparable trend in making hydrogen bonds with protein- and other waters. The mutations changed the local chemical properties and the hydration exhibited a biphasic distribution, with two time scales. Hydrogen bonding relaxation governed the local protein fluctuations on the picosecond time scale, with the fastest time (24.9 ps) at the hydrophobic site and slowest time (40.4 ps) in the charged environment. The protein dynamic was related to the water's translational diffusion via the relaxation of the protein-water's H-bonding. The structural and dynamical properties of protein-water at the molecular level are fundamental to the physiological and functional mechanisms of SNase.


Assuntos
Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mutação
5.
Langmuir ; 36(7): 1662-1670, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32005052

RESUMO

Surface-enhanced Raman spectroscopy (SERS) has been recognized as a promising analytical technique owing to its merit of nondestructive and fast detection capabilities. However, SERS usually suffers signal interferences from different analytes or a complicated matrix. Separation is an effective approach to solve the signal interference in the application of SERS. It was proposed that two concentric coffee rings could serve as a simple separation platform; however, there are still many questions to be answered for in-depth understanding. In this study, critical parameters during the formation of two concentric coffee rings are characterized for a better understanding of this phenomenon, including surface tension, surface morphology, and surface energy. Two arsenicals, including arsenate (AsV) and cacodylic acid (DMAV), are chosen to study the arsenicals' separation/migration mechanism due to their significant difference in chemical properties. In the typical coffee ring, these two arsenicals have signal interference and only DMAV is detected via SERS; however, they are detected along the radius of the two concentric coffee rings. The distribution of arsenicals on the two concentric coffee rings is further verified by the chromatographic method. Under this simple platform, interactions between the arsenicals and the surface of the silver nanofilm are pivotal to their migration/separation. By surface modification of silver nanofilm with small molecules, the surface polarity and surface ζ potential are manipulated. The signal dynamics of these two arsenicals are studied on these modified silver nanofilms. It is clear that the electrostatic interaction plays a more important role than the polarity in the arsenicals' migration. This study reveals the mechanism of small molecule migration/separation in the two concentric coffee rings and provides insights for future study of employing this simple platform.

6.
Angew Chem Int Ed Engl ; 58(12): 3843-3847, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30536937

RESUMO

K2 TiF6 :Mn4+ is a highly efficient narrow-band emission red phosphor with promising applications in white light-emitting diodes (LEDs) and wide-gamut displays. Nevertheless, the poor moisture-resistant properties of this material hinder commercialization. A convenient reverse cation-exchange strategy is introduced for constructing a core-shell-structured K2 TiF6 :Mn4+ @K2 TiF6 phosphor. The outer K2 TiF6 shell acts as a shield for preventing moisture in the air from hydrolyzing the internal MnF6 2- group, while effectively cutting off the path of energy migration to surface defects, thereby increasing the emission efficiency (especially for the phosphors doped with high concentrations of Mn4+ ). Employed as a red phosphor, the packaged white LED exhibits an extraordinarily high luminous efficacy of 162 lm W-1 , a correlated color temperature (CCT) of 3510 K, and a color rendering index of 93 (Ra ). Aging tests performed on this device at 85 °C and 85 % humidity for 480 h retain up to 89 % luminous efficacy. The findings could facilitate commercial application of K2 TiF6 :Mn4+ @K2 TiF6 phosphor.

7.
J Phys Chem A ; 122(17): 4381-4388, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29641197

RESUMO

The crystal structure and electronic spectra of the T h symmetry hexanitritoytterbate(III) anion have been studied in Cs2NaY0.96Yb0.04(NO2)6, which crystallizes in the cubic space group Fm3̅. The emission from Yb3+ can be excited via the NO2- antenna. The latter electronic transition is situated at more than twice the energy of the former, but at room temperature, one photon absorbed at 470 nm in the triplet state produces no more than one photon emitted. Some degree of quantum cutting is observed at 298 K under 420 nm excitation into the singlet state and at 25 K using excitation into either state. The quantum efficiency is ∼10% at 25 K. The energy level scheme of Yb3+ has been deduced from excitation and emission spectra and calculated by crystal field theory. New improved energy level calculations are also reported for the Cs2NaLn(NO2)6 (Ln = Pr, Eu, Tb) series using the f- Spectra package. The neat crystal Cs2NaYb(NO2)6 has also been studied, but results were unsatisfactory due to sample decomposition, and this chemical instability makes it unsuitable for applications.

8.
Appl Microbiol Biotechnol ; 102(2): 751-761, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29159585

RESUMO

Capsule of Escherichia coli O5:K4:H4 is formed of a chondroitin-repeat disaccharide unit of glucuronic acid (GlcA)-N-acetylgalactosamine (GalNAc). This polysaccharide, commonly referred to as K4CP, is a potentially important source of precursors for chemoenzymatic or bioengineering synthesis of chondroitin sulfate. KfoA, encoded by a gene from region 2 of the K4 capsular gene cluster, shows high homology to the UDP-glucose-4-epimerase (GalE) from E. coli. KfoA is reputed to be responsible for uridine 5'-diphosphate-N-acetylgalactosamine (UDP-GalNAc) supply for K4CP biosynthesis in vivo, but it has not been biochemically characterized. Here, we probed the substrate specificity of KfoA by a capillary electrophoresis (CE)-based method. KfoA could epimerize both acetylated and non-acetylated substrates, but its k cat/K m value for UDP-GlcNAc was approximately 1300-fold that for UDP-Glc. Recombinant KfoA showed a strong preference for acetylated substrates in vitro. The conclusion that KfoA is a higher efficiency UDP-GalNAc provider than GalE was supported by a coupled assay developed based on the donor-acceptor combination specificity of E. coli K4 chondroitin polymerase (KfoC). Furthermore, residue Ser-301, located near the UDP-GlcNAc binding pocket, plays an important role in the determination of the conversion ratio of UDP-GlcNAc to UDP-GalNAc by KfoA. Our results deepen the understanding of the mechanism of KfoA and will assist in the research into the metabolic engineering for chondroitin sulfate production.


Assuntos
Sulfatos de Condroitina/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , UDPglucose 4-Epimerase/metabolismo , Acetilação , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glucose/metabolismo , Cinética , Engenharia Metabólica , Especificidade por Substrato , UDPglucose 4-Epimerase/genética
9.
Appl Microbiol Biotechnol ; 102(11): 4785-4797, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29610966

RESUMO

Avibacterium paragallinarum is a Gram-negative bacterium that causes infectious coryza in chicken. It was reported that the capsule polysaccharides extracted from Av. paragallinarum genotype A contained chondroitin. Chondroitin synthase of Av. paragallinarum (ApCS) encoded by one gene within the presumed capsule biosynthesis gene cluster exhibited considerable homology to identified bacterial chondroitin synthases. Herein, we report the identification and characterization of ApCS. This enzyme indeed displays chondroitin synthase activity involved in the biosynthesis of the capsule. ApCS is a bifunctional protein catalyzing the elongation of the chondroitin chain by alternatively transferring the glucuronic acid (GlcA) and N-acetyl-D-galactosamine (GalNAc) residues from their nucleotide forms to the non-reducing ends of the saccharide chains. GlcA with a para-nitrophenyl group (pNP) could serve as the acceptor for ApCS; this enzyme shows a stringent donor tolerance when the acceptor is as small as this monosaccharide. Then, UDP-GalNAc and GlcA-pNP were injected sequentially through the chip-immobilized chondroitin synthases, and the surface plasmon resonance data demonstrated that the up-regulated extent caused by the binding of the donor is one possibly essential factor in successful polymerization reaction. This conclusion will, therefore, enhance the understanding of the mode of action of glycosyltransferase. Surprisingly, high activity at near-zero temperature as well as weak temperature dependence of this novel bacterial chondroitin synthase indicate that ApCS was a cold-active enzyme. From all accounts, ApCS becomes the fourth known bacterial chondroitin synthase, and the potential applications in artificial chondroitin sulfate and glycosaminoglycan synthetic approaches make it an attractive glycosyltransferase for further investigation.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Gammaproteobacteria/enzimologia , Gammaproteobacteria/genética , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/metabolismo , Especificidade por Substrato
10.
Chem Soc Rev ; 44(6): 1379-415, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25093303

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted considerable interest due to their superior physicochemical features, such as large anti-Stokes shifts, low autofluorescence background, low toxicity and high penetration depth, which make them extremely suitable for use as alternatives to conventional downshifting luminescence bioprobes like organic dyes and quantum dots for various biological applications. A fundamental understanding of the photophysics of lanthanide-doped UCNPs is of vital importance for discovering novel optical properties and exploring their new applications. In this review, we focus on the most recent advances in the development of lanthanide-doped UCNPs as potential luminescent nano-bioprobes by means of our customized lanthanide photophysics measurement platforms specially designed for upconversion luminescence, which covers from their fundamental photophysics to bioapplications, including electronic structures (energy levels and local site symmetry of emitters), excited-state dynamics, optical property designing, and their promising applications for in vitro biodetection of tumor markers. Some future prospects and efforts towards this rapidly growing field are also envisioned.


Assuntos
Elementos da Série dos Lantanídeos/química , Pontos Quânticos/química , Anticorpos/química , Anticorpos/imunologia , Biomarcadores/química , Biomarcadores/metabolismo , Técnicas Biossensoriais , Elétrons , Transferência Ressonante de Energia de Fluorescência , Humanos , Teoria Quântica
11.
Chem Soc Rev ; 42(16): 6924-58, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23775339

RESUMO

Lanthanide-doped inorganic nanoparticles possess superior physicochemical features such as long-lived luminescence, large antenna-generated Stokes or anti-Stokes shifts, narrow emission bands, high resistance to photobleaching and low toxicity, and thus are regarded as a new generation of luminescent bioprobes as compared to conventional molecular probes like organic dyes and lanthanide chelates. These functional nanoparticles, although most of their bulk counterparts were well studied previously, have attracted renewed interest for their biomedical applications in areas as diverse as biodetection, bioimaging, and disease diagnosis and therapeutics. In this review, we provide a comprehensive survey of the latest advances made in developing lanthanide-doped inorganic nanoparticles as potential luminescent bioprobes, which covers areas from their fundamental chemical and physical features to bioapplications including controlled synthesis methodology, surface modification chemistry, optical spectroscopy, and their promising applications in diverse fields, with an emphasis on heterogeneous and homogeneous in vitro biodetection of tumor markers and multimodal bioimaging of various tumor tissues. Some future prospects and challenges in this rapidly growing field are also summarized.


Assuntos
Elementos da Série dos Lantanídeos/química , Nanopartículas Metálicas/química , Medições Luminescentes , Óxidos/química , Semicondutores , Transistores Eletrônicos
12.
Angew Chem Int Ed Engl ; 53(46): 12498-502, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25131425

RESUMO

Conventional dissociation-enhanced lanthanide fluoroimmunoassays (DELFIA) using molecular probes suffer from a low labeling ratio of lanthanide ions (Ln(3+) ) per biomolecule. Herein, we develop a unique bioassay based on the dissolution-enhanced luminescence of inorganic lanthanide nanoparticles (NPs). As a result of the highly concentrated Ln(3+)  ions in a single Ln(3+)  NP, an extremely high Ln(3+)  labeling ratio can be achieved, which amplifies significantly the luminescence signal and thus improves the detection sensitivity compared to DELFIA. Utilizing sub-10 nm NaEuF4  NPs as dissolution-enhanced luminescent nanoprobes, we demonstrate the successful in vitro detection of carcinoembryonic antigen (CEA, an important tumor marker) in human serum samples with a record-low detection limit of 0.1 pg mL(-1) (0.5 fM). This value is an improvement of approximately 3 orders of magnitude relative to that of DELFIA. The dissolution-enhanced luminescent bioassay shows great promise in versatile bioapplications, such as ultrasensitive and multiplexed in vitro detection of disease markers in clinical diagnosis.


Assuntos
Antígeno Carcinoembrionário/sangue , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/química , Medições Luminescentes/métodos , Nanopartículas/química , Humanos , Limite de Detecção , Luminescência , Neoplasias/sangue , Solubilidade
13.
Angew Chem Int Ed Engl ; 53(5): 1252-7, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24436151

RESUMO

Lanthanide-doped upconversion nanoparticles (UCNPs) have shown great promise in bioapplications. Exploring new host materials to realize efficient upconversion luminescence (UCL) output is a goal of general concern. Herein, we develop a unique strategy for the synthesis of novel LiLuF4 :Ln(3+) core/shell UCNPs with typically high absolute upconversion quantum yields of 5.0 % and 7.6 % for Er(3+) and Tm(3+) , respectively. Based on our customized UCL biodetection system, we demonstrate for the first time the application of LiLuF4 :Ln(3+) core/shell UCNPs as sensitive UCL bioprobes for the detection of an important disease marker ß subunit of human chorionic gonadotropin (ß-hCG) with a detection limit of 3.8 ng mL(-1) , which is comparable to the ß-hCG level in the serum of normal humans. Furthermore, we use these UCNPs in proof-of-concept computed tomography imaging and UCL imaging of cancer cells, thus revealing the great potential of LiLuF4 :Ln(3+) UCNPs as efficient nano-bioprobes in disease diagnosis.


Assuntos
Técnicas Biossensoriais , Gonadotropina Coriônica/análise , Elementos da Série dos Lantanídeos/química , Lítio/química , Lutécio/química , Nanopartículas Metálicas/química , Biomarcadores/análise , Biomarcadores/sangue , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Gonadotropina Coriônica/sangue , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/toxicidade , Microscopia Confocal , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X
14.
Adv Mater ; 36(9): e2311011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38041490

RESUMO

Highly efficient near-infrared (NIR) luminescent nanomaterials are urgently required for portable mini or micro phosphors-converted light-emitting diodes (pc-LEDs). However, most existing NIR-emitting phosphors are generally restricted by their low photoluminescence (PL) quantum yield (QY) or large particle size. Herein, a kind of highly efficient NIR nanophosphors is developed based on copper indium selenide quantum dots (CISe QDs). The PL peak of these QDs can be exquisitely manipulated from 750 to 1150 nm by altering the stoichiometry of Cu/In and doping with Zn2+ . Their absolute PLQY can be significantly improved from 28.6% to 92.8% via coating a ZnSe shell. By combining the phosphors with a commercial blue chip, an NIR pc-LED is fabricated with remarkable photostability and a record-high radiant flux of 88.7 mW@350 mA among the Pb/Cd-free QDs-based NIR pc-LEDs. Particularly, such QDs-based nanophosphors acted as excellent luminescence converter for NIR micro-LEDs with microarray diameters below 5 µm, which significantly exceeds the resolutions of current commercial inkjet display pixels. The findings may open new avenues for the exploration of highly efficient NIR micro-LEDs in a variety of applications.

15.
Adv Sci (Weinh) ; : e2403337, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810101

RESUMO

Sepsis is an infection-triggered, rapidly progressive systemic inflammatory syndrome with a high mortality rate. Currently, there are no promising therapeutic strategies for managing this disease in the clinic. Heparanase plays a crucial role in the pathology of sepsis, and its inhibition can significantly relieve related symptoms. Here, a novel heparanase inhibitor CV122 is rationally designed and synthesized, and its therapeutic potential for sepsis with Lipopolysaccharide (LPS) and Cecal Ligation and Puncture (CLP)-induced sepsis mouse models are evaluated. It is found that CV122 potently inhibits heparanase activity in vitro, protects cell surface glycocalyx structure, and reduces the expression of adhesion molecules. In vivo, CV122 significantly reduces the systemic levels of proinflammatory cytokines, prevents organ damage, improves vitality, and efficiently protects mice from sepsis-induced death. Mechanistically, CV122 inhibits the activity of heparanase, reduces its expression in the lungs, and protects glycocalyx structure of lung tissue. It is also found that CV122 provides effective protection from organ damage and death caused by Crimean-Congo hemorrhagic fever virus (CCHFV) infection. These results suggest that CV122 is a potential drug candidate for sepsis therapy targeting heparanase by inhibiting cytokine storm.

16.
Anal Chem ; 85(21): 10225-31, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24074184

RESUMO

Bionanoparticles and nanostructures with high biocompatibility and stability, low toxicity, diversification of imaging modality, and specificity of targeting to desired organs or cells are of great interest in nanobiology and medicine. However, integrating all of these desired features into a single bionanoparticle, which can be applied to biomedical applications and eventually in clinical prediagnosis and therapy, is still a challenge. We herein report a facile one-step solvothermal approach to fabricate targetable and biocompatible ß-NaYF4:Yb,Gd,Tm upconversion nanoparticles (UCNPs) with bimodal-signals (near-infrared (NIR) fluorescence and magnetic resonance (MR) signals) using hyaluronic acid (HA) as a multifunctional molecule. The prepared UCNPs with low toxicity are successfully applied for in vitro and in vivo targeted tumor imaging. The developed biomimetic surface modification approach for the synthesis of biomolecule-guided multifunctional UCNPs holds great potential applications in medical diagnostics and therapy.


Assuntos
Magnetismo , Nanopartículas , Animais , Linhagem Celular , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Espectrometria de Fluorescência , Espectroscopia de Luz Próxima ao Infravermelho , Temperatura
17.
Chemistry ; 19(18): 5516-27, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23505047

RESUMO

Multimodal bioprobes, which integrate the advantages of different diagnostic modes into one single particle, can overcome the current limitations of sensitivity and resolution in medical assays and significantly improve the outcome of existing therapeutics. Lanthanide-doped inorganic multimodal bioprobes, which are emerging as a promising new class of optical/magnetic multimodal bioprobes, have been long sought-after and have recently attracted revived interest owing to their distinct optical and magnetic properties. In this concept article, we introduce the controlled synthesis of lanthanide-doped inorganic multimodal bioprobes, including core-shell structured and single-phase nanoparticles, and demonstrate different design strategies for achieving dual-modal functionalization of nanoprobes. In particular, we highlight the most recent advances in biodetection, bioimaging, targeted drug delivery, and therapy based on these nanoparticles.


Assuntos
Técnicas Biossensoriais , Elementos da Série dos Lantanídeos/química , Magnetismo , Nanopartículas/química , Células HeLa , Humanos
18.
J Control Release ; 353: 675-684, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521687

RESUMO

Despite exosome promise as endogenous drug delivery vehicles, the current understanding of exosome may be insufficient to develop their various applications. Here we synthesized five sialic acid analogues with different length N-acyl side chains and screened out the optimal metabolic precursor for exosome labeling via bio-orthogonal click chemistry. In proof-of-principle labeling experiments, exosomes derived from macrophages (RAW-Exo) strongly co-localized with central nervous system (CNS) microglia. Inspired by this discovery, we developed a resveratrol-loaded RAW-Exo formulation (RSV&Exo) for multiple sclerosis (MS) treatment. Intranasal administration of RSV&Exo significantly inhibited inflammatory responses in the CNS and peripheral system in a mouse model of MS and effectively improved the clinical evolution of MS in vivo. These findings suggested the feasibility and efficacy of engineered RSV&Exo administration for MS, providing a potential therapeutic strategy for CNS diseases.


Assuntos
Exossomos , Esclerose Múltipla , Camundongos , Animais , Microglia , Resveratrol/uso terapêutico , Resveratrol/metabolismo , Esclerose Múltipla/tratamento farmacológico , Exossomos/metabolismo , Macrófagos
19.
J Am Chem Soc ; 134(36): 15083-90, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22913455

RESUMO

Ultrasmall inorganic oxide nanoparticles doped with trivalent lanthanide ions (Ln(3+)), a new and huge family of luminescent bioprobes, remain nearly untouched. Currently it is a challenge to synthesize biocompatible ultrasmall oxide bioprobes. Herein, we report a new inorganic oxide bioprobe based on sub-5 nm amine-functionalized tetragonal ZrO(2)-Ln(3+) nanoparticles synthesized via a facile solvothermal method and ligand exchange. By utilizing the long-lived luminescence of Ln(3+), we demonstrate its application as a sensitive time-resolved fluorescence resonance energy transfer (FRET) bioprobe to detect avidin with a record-low detection limit of 3.0 nM. The oxide nanoparticles also exhibit specific recognition of cancer cells overexpressed with urokinase plasminogen activator receptor (uPAR, an important marker of tumor biology and metastasis) and thus may have great potentials in targeted bioimaging.


Assuntos
Antineoplásicos/química , Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Compostos Organometálicos/química , Aminas/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Elementos da Série dos Lantanídeos/química , Lasers , Nanopartículas/química , Compostos Organometálicos/síntese química , Compostos Organometálicos/farmacologia , Relação Estrutura-Atividade , Fatores de Tempo , Zircônio/química
20.
J Am Chem Soc ; 134(51): 20849-57, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23210614

RESUMO

Lanthanide-doped upconversion nanoparticles have been the focus of a growing body of investigation because of their promising applications ranging from data storage to biological imaging and drug delivery. Here we present the rational design, synthesis, and characterization of a new class of core-shell upconversion nanoparticles displaying unprecedented optical properties. Specifically, we show that the epitaxial growth of an optically inert NaYF(4) layer around a lanthanide-doped NaGdF(4)@NaGdF(4) core-shell nanoparticle effectively prevents surface quenching of excitation energy. At room temperature, the energy migrates over Gd sublattices and is adequately trapped by the activator ions embedded in host lattices. Importantly, the NaYF(4) shell-coating strategy gives access to tunable upconversion emissions from a variety of activators (Dy(3+), Sm(3+), Tb(3+), and Eu(3+)) doped at very low concentrations (down to 1 mol %). Our mechanistic investigations make possible, for the first time, the realization of efficient emissions from Tb(3+) and Eu(3+) activators that are doped homogeneously with Yb(3+)/Tm(3+) ions. The advances on these luminescent nanomaterials offer exciting opportunities for important biological and energy applications.


Assuntos
Fluoretos/química , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/química , Nanopartículas/química , Ítrio/química , Transferência de Energia , Células Hep G2 , Humanos , Nanopartículas/ultraestrutura , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA