Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 24203-24212, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475253

RESUMO

The interleaver was one of the key devices in dense wavelength division multiplexing (DWDM) applications. In this study, an interleaver with an asymmetrical Mach-Zehnder interferometer structure was designed, fabricated, and characterized in hybrid silicon and lithium niobate thin films (Si-LNOI). The interleaver based on Si-LNOI could be fabricated by mature processing technology of Si photonic, and it was capable of the electro-optical (E-O) tuning function by using the E-O effect of LN. In the range of 1530-1620 nm, the interleaver achieved a channel spacing of 55 GHz and an extinction ratio of 12-28 dB. Due to the large refractive index of Si, the Si loading strip waveguide based on Si-LNOI had a compact optical mode area, which allowed a small electrode gap to improve the E-O modulation efficiency of the interleaver. For an E-O interaction length of 1 mm, the E-O modulation efficiency was 26 pm/V. The interleaver will have potential applications in DWDM systems, optical switches, and filters.

2.
Nat Commun ; 11(1): 5245, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067455

RESUMO

Non-dispersive infrared (NDIR) spectroscopy analyzes the concentration of target gases based on their characteristic infrared absorption. In conventional NDIR gas sensors, an infrared detector has to pair with a bandpass filter to select the target gas. However, multiplexed NDIR gas sensing requires multiple pairs of bandpass filters and detectors, which makes the sensor bulky and expensive. Here, we propose a multiplexed NDIR gas sensing platform consisting of a narrowband infrared detector array as read-out. By integrating plasmonic metamaterial absorbers with pyroelectric detectors at the pixel level, the detectors exhibit spectrally tunable and narrowband photoresponses, circumventing the need for separate bandpass filter arrays. We demonstrate the sensing of H2S, CH4, CO2, CO, NO, CH2O, NO2, SO2. The detection limits of common gases such as CH4, CO2, and CO are 63 ppm, 2 ppm, and 11 ppm, respectively. We also demonstrate the deduction of the concentrations of two target gases in a mixture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA