Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8013): 798-802, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599238

RESUMO

Compared to polycrystalline semiconductors, amorphous semiconductors offer inherent cost-effective, simple and uniform manufacturing. Traditional amorphous hydrogenated Si falls short in electrical properties, necessitating the exploration of new materials. The creation of high-mobility amorphous n-type metal oxides, such as a-InGaZnO (ref. 1), and their integration into thin-film transistors (TFTs) have propelled advancements in modern large-area electronics and new-generation displays2-8. However, finding comparable p-type counterparts poses notable challenges, impeding the progress of complementary metal-oxide-semiconductor technology and integrated circuits9-11. Here we introduce a pioneering design strategy for amorphous p-type semiconductors, incorporating high-mobility tellurium within an amorphous tellurium suboxide matrix, and demonstrate its use in high-performance, stable p-channel TFTs and complementary circuits. Theoretical analysis unveils a delocalized valence band from tellurium 5p bands with shallow acceptor states, enabling excess hole doping and transport. Selenium alloying suppresses hole concentrations and facilitates the p-orbital connectivity, realizing high-performance p-channel TFTs with an average field-effect hole mobility of around 15 cm2 V-1 s-1 and on/off current ratios of 106-107, along with wafer-scale uniformity and long-term stabilities under bias stress and ambient ageing. This study represents a crucial stride towards establishing commercially viable amorphous p-channel TFT technology and complementary electronics in a low-cost and industry-compatible manner.

2.
Nature ; 590(7845): 262-267, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568822

RESUMO

Steels with sub-micrometre grain sizes usually possess high toughness and strength, which makes them promising for lightweighting technologies and energy-saving strategies. So far, the industrial fabrication of ultrafine-grained (UFG) alloys, which generally relies on the manipulation of diffusional phase transformation, has been limited to steels with austenite-to-ferrite transformation1-3. Moreover, the limited work hardening and uniform elongation of these UFG steels1,4,5 hinder their widespread application. Here we report the facile mass production of UFG structures in a typical Fe-22Mn-0.6C twinning-induced plasticity steel by minor Cu alloying and manipulation of the recrystallization process through the intragranular nanoprecipitation (within 30 seconds) of a coherent disordered Cu-rich phase. The rapid and copious nanoprecipitation not only prevents the growth of the freshly recrystallized sub-micrometre grains but also enhances the thermal stability of the obtained UFG structure through the Zener pinning mechanism6. Moreover, owing to their full coherency and disordered nature, the precipitates exhibit weak interactions with dislocations under loading. This approach enables the preparation of a fully recrystallized UFG structure with a grain size of 800 ± 400 nanometres without the introduction of detrimental lattice defects such as brittle particles and segregated boundaries. Compared with the steel to which no Cu was added, the yield strength of the UFG structure was doubled to around 710 megapascals, with a uniform ductility of 45 per cent and a tensile strength of around 2,000 megapascals. This grain-refinement concept should be extendable to other alloy systems, and the manufacturing processes can be readily applied to existing industrial production lines.

3.
Plant Physiol ; 195(3): 2339-2353, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38506490

RESUMO

Iron (Fe) distribution and reutilization are crucial for maintaining Fe homeostasis in plants. Here, we demonstrate that the tomato (Solanum lycopersicum) Colorless nonripening (Cnr) epimutant exhibits increased Fe retention in cell wall pectin due to an increase in pectin methylesterase (PME) activity. This ultimately leads to Fe deficiency responses even under Fe-sufficient conditions when compared to the wild type (WT). Whole-genome bisulfite sequencing revealed that modifications to cell wall-related genes, especially CG hypermethylation in the intron region of PECTIN METHYLESTERASE53 (SlPME53), are involved in the Cnr response to Fe deficiency. When this intron hypermethylation of SlPME53 was artificially induced in WT, we found that elevated SlPME53 expression was accompanied by increased PME activity and increased pectin-Fe retention. The manipulation of SlPME53, either through overexpression in WT or knockdown in Cnr, influenced levels of pectin methylesterification and accumulation of apoplast Fe in roots. Moreover, CG hypermethylation mediated by METHYLTRANSFERASE1 (SlMET1) increased SlPME53 transcript abundance, resulting in greater PME activity and higher Fe retention in cell wall pectin. Therefore, we conclude that the Cnr mutation epigenetically modulates SlPME53 expression by SlMET1-mediated CG hypermethylation, and thus the capacity of the apoplastic Fe pool, creating opportunities for genetic improvement of crop mineral nutrition.


Assuntos
Hidrolases de Éster Carboxílico , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Ferro , Raízes de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Ferro/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Metilação de DNA/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Parede Celular/metabolismo , Pectinas/metabolismo
4.
Plant J ; 113(2): 387-401, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36471650

RESUMO

Formate dehydrogenase (FDH; EC 1.2.1.2.) has been implicated in plant responses to a variety of stresses, including aluminum (Al) stress in acidic soils. However, the role of this enzyme in Al tolerance is not yet fully understood, and how FDH gene expression is regulated is unknown. Here, we report the identification and functional characterization of the tomato (Solanum lycopersicum) SlFDH gene. SlFDH encodes a mitochondria-localized FDH with Km values of 2.087 mm formate and 29.1 µm NAD+ . Al induced the expression of SlFDH in tomato root tips, but other metals did not, as determined by quantitative reverse transcriptase-polymerase chain reaction. CRISPR/Cas9-generated SlFDH knockout lines were more sensitive to Al stress and formate than wild-type plants. Formate failed to induce SlFDH expression in the tomato root apex, but NAD+ accumulated in response to Al stress. Co-expression network analysis and interaction analysis between genomic DNA and transcription factors (TFs) using PlantRegMap identified seven TFs that might regulate SlFDH expression. One of these TFs, SlSTOP1, positively regulated SlFDH expression by directly binding to its promoter, as demonstrated by a dual-luciferase reporter assay and electrophoretic mobility shift assay. The Al-induced expression of SlFDH was completely abolished in Slstop1 mutants, indicating that SlSTOP1 is a core regulator of SlFDH expression under Al stress. Taken together, our findings demonstrate that SlFDH plays a role in Al tolerance and reveal the transcriptional regulatory mechanism of SlFDH expression in response to Al stress in tomato.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , NAD/metabolismo , Alumínio/toxicidade , Alumínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Formiatos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Br J Haematol ; 204(3): 976-987, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246862

RESUMO

The presence of transient abnormal protein banding (M-protein immune reconstitution) in serum immunofixation electrophoresis after autologous haematopoietic stem cell transplantation in patients with multiple myeloma has been reported. The purpose of this study was to investigate the impact of post-transplant M-protein immune reconstitution on the prognosis of patients with multiple myeloma. M-protein immune reconstitution was observed in 25.9% (75/290) of patients. The CR rate and MRD negativity were higher in the M-protein immune reconstitution group (85.3% vs. 69.3%, p = 0.013, 81.9% vs. 66.5%, p = 0.014). Although there were no significant differences between the groups, the overall median survival time was longer in the M-protein immune reconstruction group (80 vs. 72 m, p = 0.076; not reached vs. 105 m, p = 0.312). Among patients in the cytogenetic high-risk group, the occurrence of M-protein immune reconstitution predicted better PFS and OS (80 vs. 31 m, p = 0.010; not reached vs. 91 m, p = 0.026). Additionally, in revised-International Staging System stage III patients, PFS and OS were better in those who achieved M-protein immune reconstitution (80 vs. 20 m, p = 0.025; 57 vs. 32 m, p = 0.103). The better prognosis of M-protein immune reconstitution patients may be associated with the acquisition of a deeper response. In high-risk patients, early acquisition of M-protein immune reconstitution may suggest a better prognosis.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Mieloma Múltiplo , Humanos , Prognóstico , Transplante de Células-Tronco Hematopoéticas/métodos , Análise Citogenética , Transplante Autólogo , Estudos Retrospectivos , Transplante de Células-Tronco , Resultado do Tratamento
6.
Small ; 20(1): e2304626, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641178

RESUMO

Electronics have greatly promoted the development of modern society and the exploration of new semiconducting materials with low cost and high mobility continues to attract interest in the advance of next-generation electronic devices. Among emerging semiconductors, the metal-halide perovskite, especially the nontoxic tin (Sn)-based candidates, has recently made breakthroughs in the field of diverse electronic devices due to its excellent charge transport properties and cost-effective large-area deposition capability at low temperatures. To enable a more comprehensive understanding of this emerging research field and promote the development of new-generation perovskite electronics, this review aims to provide an in-depth understanding with the discussion of unique physical properties of Sn-based perovskites and the summarization of recent research progress of Sn-based perovskite field-effect transistors (FETs) and diverse electronic devices. The unique character of negligible ion migration is also discussed, which is fundamentally different from the lead-based counterparts and provides a great prerequisite for device application. The following section highlights the potential broad applications of Sn-perovskite FETs as a competitive and feasible technology. Finally, an outlook and remaining challenges are given to advance the progression of Sn-based perovskite FETs, especially on the origin and solution of stability problems toward high-performance Sn-based perovskite electronics.

7.
Arch Virol ; 169(2): 36, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265511

RESUMO

Current therapies for hepatitis B virus (HBV) infection can slow disease progression but cannot cure the infection, as it is difficult to eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The interaction between host factors and cccDNA is essential for their formation, stability, and transcriptional activity. Here, we focused on the regulatory role of the host factor ENPP1 and its interacting transcription factor LMNB1 in HBV replication and transcription to better understand the network of host factors that regulate HBV, which may facilitate the development of new antiviral drugs. Overexpression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) in Huh7 cells decreased HBV pregenomic RNA (pgRNA) and hepatitis B core antigen (HBcAg) expression levels, whereas knockdown of ENPP1 increased them. A series of HBV promoter and mutant plasmids were constructed, and a luciferase reporter assay showed that overexpression of ENPP1 caused inhibition of the HBV promoter and its mutants. A DNA pull-down assay showed that lamin B1 (LMNB1), but not ENPP1, interacts directly with the HBV enhancer II/ basic core promoter (EnhII/BCP). ZDOCK and PyMOL software were used to predict the interaction of ENPP1 with LMNB1. Overexpression of LMNB1 inhibited the activity of the HBV promoter and its mutant. The acetylation levels at the amino acids 111K, 261K, and 483K of LMNB1 were reduced compared to the control, and an LMNB1 acetylation mutant containing 111R, 261Q, 261R, 483Q, and 483R showed increased promoter activity. In summary, ENPP1 together with LMNB1 increased the acetylation level at 111K and 261K, and LMNB1 inhibited the activity of HBV promoter and downregulated the expression of pregenomic RNA and HBcAg. Our follow-up studies will investigate the expression, clinical significance, and relevance of ENPP1 and LMNB1 in HBV patient tissues, explore the effect of LMNB1 on post-transcriptional progression, and examine whether ENPP1 can reduce cccDNA levels in the nucleus.


Assuntos
Vírus da Hepatite B , Lamina Tipo B , Diester Fosfórico Hidrolases , Pirofosfatases , Humanos , Acetilação , Hepatite B , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B/genética , Lamina Tipo B/genética , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , RNA
8.
Respir Res ; 24(1): 296, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007420

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive scarring interstitial lung disease with an unknown cause. Some patients may experience acute exacerbations (AE), which result in severe lung damage visible on imaging or through examination of tissue samples, often leading to high mortality rates. However, the etiology and pathogenesis of AE-IPF remain unclear. AE-IPF patients exhibit diffuse lung damage, apoptosis of type II alveolar epithelial cells, and an excessive inflammatory response. Establishing a reliable animal model of AE is critical for investigating the pathogenesis. Recent studies have reported a variety of animal models for AE-IPF, each with its own advantages and disadvantages. These models are usually established in mice with bleomycin-induced pulmonary fibrosis, using viruses, bacteria, small peptides, or specific drugs. In this review, we present an overview of different AE models, hoping to provide a useful resource for exploring the mechanisms and targeted therapies for AE-IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Animais , Camundongos , Fibrose Pulmonar Idiopática/diagnóstico , Pulmão , Modelos Animais , Progressão da Doença
9.
Cell Mol Life Sci ; 79(5): 238, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35416545

RESUMO

Human males absent on the first (MOF), a histone acetyltransferase (HAT), forms male-specific lethal (MSL) and non-specific lethal (NSL), two multiprotein HATs, in cells. MSL was originally discovered in dosage compensation study in Drosophila that can specifically acetylate H4K16, while NSL can simultaneously catalyze the H4 at K5, K8, and K16 sites. However, comparative studies of the two HATs in regulating specific biological functions are rarely reported. Here, we present evidence to argue that MSL and NSL function in different ways in the epithelial-to-mesenchymal transition (EMT) process. At first, CRISPR/Cas9-mediated MSL1 (a key subunit of the MSL)-knockout (KO) and NSL3 (a key subunit of the NSL)-KO cells seem to prefer to grow in clusters. Interestingly, the former promotes cell survival and clonal formation, while the latter has the opposite effect on it. Cell staining revealed that MSL1-KO leads to multipolarized spindles, while NSL3-KO causes more lumen-like cells. Furthermore, in Transwell experiments, silencing of MSL1 promotes cell invasion in 293 T, MCF-7, and MDA-MB-231 cells. In contrast, the inhibitory effects on cell invasion are observed in the same NSL3-silenced cells. Consistent with this, mesenchymal biomarkers, like N-cadherin, vimentin, and snail, are negatively correlated with the expression level of MSL1; however, a positive relationship between these proteins and NSL3 in cells has been found. Further studies have clarified that MSL1, but not NSL3, can specifically bind to the E-box-containing Snail promoter region and thereby negatively regulate Snail transactivation. Also, silencing of MSL1 promotes the lung metastasis of B16F10 melanoma cells in mice. Finally, ChIP-Seq analysis indicated that the NSL may be mainly involved in phosphoinositide-mediated signaling pathways. Taken together, the MOF-containing MSL and NSL HATs may regulate the EMT process in different ways in order to respond to different stimuli.


Assuntos
Transição Epitelial-Mesenquimal , Histona Acetiltransferases , Acetilação , Animais , Mecanismo Genético de Compensação de Dose , Transição Epitelial-Mesenquimal/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Humanos , Camundongos
10.
Chem Biodivers ; 20(9): e202301024, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37507844

RESUMO

One new fawcettimine-type alkaloid (1), one new miscellaneous-type alkaloid (2), four new lycodine-type alkaloids (3-6), and eight known ones (7-14) were isolated from the whole plants of Huperzia serrata. Their structures and absolute configurations were elucidated based on spectroscopic data, X-ray diffraction, ECD calculation and Mosher's method. Compound 1 was a rare C18 N2 -type Lycopodium alkaloid, possessing serratinine skeleton with an amide side chain in C-5. The absolute configuration of the 18-OH of compounds 4-6 were first determined by Mosher's method. Moreover, compounds 1-14 were assayed anti-acetylcholinesterase effect in vitro, and compound 7 showed significant anti-acetylcholinesterase activity with an IC50 value of 16.18±1.64 µM.


Assuntos
Alcaloides , Huperzia , Lycopodium , Acetilcolinesterase , Alcaloides/farmacologia , Alcaloides/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Huperzia/química , Lycopodium/química , Estrutura Molecular
11.
Clin Infect Dis ; 74(4): 630-638, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34043784

RESUMO

BACKGROUND: Knowledge of COVID-19 epidemiology remains incomplete and crucial questions persist. We aimed to examine risk factors for COVID-19 death. METHODS: A total of 80 543 COVID-19 cases reported in China, nationwide, through 8 April 2020 were included. Risk factors for death were investigated by Cox proportional hazards regression and stratified analyses. RESULTS: Overall national case-fatality ratio (CFR) was 5.64%. Risk factors for death were older age (≥80: adjusted hazard ratio, 12.58; 95% confidence interval, 6.78-23.33), presence of underlying disease (1.33; 1.19-1.49), worse case severity (severe: 3.86; 3.15-4.73; critical: 11.34; 9.22-13.95), and near-epicenter region (Hubei: 2.64; 2.11-3.30; Wuhan: 6.35; 5.04-8.00). CFR increased from 0.35% (30-39 years) to 18.21% (≥70 years) without underlying disease. Regardless of age, CFR increased from 2.50% for no underlying disease to 7.72% for 1, 13.99% for 2, and 21.99% for ≥3 underlying diseases. CFR increased with worse case severity from 2.80% (mild) to 12.51% (severe) and 48.60% (critical), regardless of region. Compared with other regions, CFR was much higher in Wuhan regardless of case severity (mild: 3.83% vs 0.14% in Hubei and 0.03% elsewhere; moderate: 4.60% vs 0.21% and 0.06%; severe: 15.92% vs 5.84% and 1.86%; and critical: 58.57% vs 49.80% and 18.39%). CONCLUSIONS: Older patients regardless of underlying disease and patients with underlying disease regardless of age were at elevated risk of death. Higher death rates near the outbreak epicenter and during the surge of cases reflect the deleterious effects of allowing health systems to become overwhelmed.


Assuntos
COVID-19 , China/epidemiologia , Surtos de Doenças , Humanos , Modelos de Riscos Proporcionais , Fatores de Risco , SARS-CoV-2
12.
J Exp Zool B Mol Dev Evol ; 338(5): 301-313, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226401

RESUMO

Activating transcription factor 5 (Atf5) is a member of the ATF/CREB family of transcription factors and involved in diverse cellular functions and diseases in mammals. However, the function of atf5 remains largely unknown in fish. Here, we report the expression pattern and function of duplicated atf5 genes in zebrafish. The results showed that the gene structures of zebrafish atf5a and atf5b were similar to their mammalian orthologs. Zebrafish Atf5a and Atf5b shared an amino acid sequence identity of 40.7%. Zebrafish atf5a and atf5b had maternal origin with dynamic expression during embryonic development. Zebrafish atf5a mRNA is mainly enriched in olfactory epithelium, midbrain, and hindbrain, while zebrafish atf5b mRNA is mainly detected in midbrain, hindbrain, and liver during embryogenesis. The results of acute hypoxia experiment showed that atf5a mRNA was significantly upregulated in the brain, liver, and muscle, while atf5b mRNA was just increased significantly in the brain. Functional analysis showed that knockdown of atf5a affects the development of the ciliated neurons in zebrafish embryos. The effect was enhanced when atf5a MO was co-injected with atf5b MO. The development of ciliated neurons in zebrafish embryos was not affected by injection of atf5b MO alone. atf5a knockdown also affects the development of early-born olfactory neurons. The effects caused by atf5a knockdown could be rescued by atf5b mRNA. These results suggest that the duplicated atf5 genes may have evolved divergently and play redundant biological roles in the development of olfactory sensory neurons in zebrafish.


Assuntos
Duplicação Gênica , Peixe-Zebra , Fatores Ativadores da Transcrição/genética , Fatores Ativadores da Transcrição/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , RNA Mensageiro/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163057

RESUMO

Low phosphate (Pi) availability and high aluminum (Al) toxicity constitute two major plant mineral nutritional stressors that limit plant productivity on acidic soils. Advances toward the identification of genes and signaling networks that are involved in both stresses in model plants such as Arabidopsis thaliana and rice (Oryza sativa), and in other plants as well have revealed that some factors such as organic acids (OAs), cell wall properties, phytohormones, and iron (Fe) homeostasis are interconnected with each other. Moreover, OAs are involved in recruiting of many plant-growth-promoting bacteria that are able to secrete both OAs and phosphatases to increase Pi availability and decrease Al toxicity. In this review paper, we summarize these mutual mechanisms by which plants deal with both Al toxicity and P starvation, with emphasis on OA secretion regulation, plant-growth-promoting bacteria, transcription factors, transporters, hormones, and cell wall-related kinases in the context of root development and root system architecture remodeling that plays a determinant role in improving P use efficiency and Al resistance on acidic soils.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Fosfatos/deficiência , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Bactérias/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
14.
J Integr Plant Biol ; 64(5): 1059-1075, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35297168

RESUMO

Iron (Fe) homeostasis is critical for plant growth, development, and stress responses. Fe levels are tightly controlled by intricate regulatory networks in which transcription factors (TFs) play a central role. A series of basic helix-loop-helix (bHLH) TFs have been shown to contribute to Fe homeostasis, but the regulatory layers beyond bHLH TFs remain largely unclear. Here, we demonstrate that the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) TF SlSPL-CNR negatively regulates Fe-deficiency responses in tomato (Solanum lycopersicum) roots. Fe deficiency rapidly repressed the expression of SlSPL-CNR, and Fe deficiency responses were intensified in two clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9-generated SlSPL-CNR knock-out lines compared to the wild-type. Comparative transcriptome analysis identified 47 Fe deficiency-responsive genes the expression of which is negatively regulated by SlSPL-CNR, one of which, SlbHLH101, helps regulate Fe uptake genes. SlSPL-CNR localizes the nucleus and interacts with the GTAC and BOX 4 (ATTAAT) motifs in the SlbHLH101 promoter to repress its expression. Inhibition of SlSPL-CNR expression in response to Fe deficiency was well correlated with the expression of the microRNA SlymiR157. SlymiR157-overexpressing tomato lines displayed enhanced Fe deficiency responses, as did SlSPL-CNR loss-of-function mutants. We propose that the SlymiR157-SlSPL-CNR module represents a novel pathway that acts upstream of SlbHLH101 to regulate Fe homeostasis in tomato roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiências de Ferro , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(8): 797-802, 2022 Aug 10.
Artigo em Zh | MEDLINE | ID: mdl-35929925

RESUMO

With the extensive application of highly sensitive genetic techniques in the field of prenatal diagnosis, prenatal chromosomal mosaicisms including true fetal mosaicisms and confined placental mosaicisms are frequently identified in clinical settings, and the diagnostic criteria and principle of genetic counseling and clinical management for such cases may vary significantly among healthcare centers across the country. This not only has brought challenges to laboratory technician, genetic counselor and fetal medicine doctor, but can also cause confusion and anxiety of the pregnant woman and their family members. In this regard, we have formulated a consensus over the prenatal diagnosis and genetic counseling for chromosomal mosaicisms with the aim to promote more accurate and rational evaluation for fetal chromosomal mosaicisms in prenatal clinics.


Assuntos
Aconselhamento Genético , Mosaicismo , Consenso , Feminino , Humanos , Placenta , Gravidez , Diagnóstico Pré-Natal/métodos
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(5): 839-843, 2021 Sep.
Artigo em Zh | MEDLINE | ID: mdl-34622602

RESUMO

OBJECTIVE: To compare the clinical manifestations of pertussis in children of different ages and different immunization statuses in Wenzhou, and to explore the limitations of diagnostic criteria for pertussis. METHODS: The clinical data of 288 children diagnosed with pertussis at Yuying Children's Hospital & the Second Affiliated Hospital of Wenzhou Medical University from October 2017 to December 2019 were retrospectively analyzed. The clinical characteristics of children of different ages and different immunization statuses were analyzed. Their clinical data were compared to relevant diagnostic criteria of pertussis in children of different ages according to the Recommendations for Diagnosis and Treatment of Chinese Children with Pertussis and the diagnosis conformity rate was analyzed. RESULTS: Among the 288 children, 124 cases (43.06%) were 3 months old or younger, and 164 cases (288, 56.94%) were >3 months old. Among patients≤3 months of age, cyanosis, three-depression sign, face redness, dyspnea and peripheral blood lymphocyte ratio were significantly higher than those of patients >3 months of age. They also had higher incidence of pneumonia, higher proportion of developing severe pertussis, and longer stay at the hospital. All these findings showed statistically significant difference ( P<0.05). 83 children were fully immunized (receiving the full course of vaccination), and 205 were not fully immunized (not receiving the full course of vaccination or being unvaccinated). The proportion of children presenting cyanosis, shortness of breath, three depression sign and face redness in the incomplete immunization group was higher than that in the complete immunization group. In the incomplete immunization group, the proportion of lymphocytes was higher, the level of C-reactive protein (CRP) was lower, and the length of hospitalization was longer than those of the complete immunization group. All the differences were statistically significant ( P<0.05). Among patients aged ≤3 months, the conformity rate of diagnosis (112/114, 90.32%) upon admission was higher than that among patients aged >3 months (119/164, 72.56%). Among patients aged ≤3 months, 41.94% (52/124, while 54.03% (67/124) of the patients aged ≤3 months had WBC count <20×10 9 L -1. CONCLUSION: Pertussis in children ≤3 months of age in Wenzhou City were more serious, showing higher rate of diagnosis conforming to the recommended clinical diagnostic criteria than that in children >3 months old. The WBC threshold in routine blood test of ≤3 months old could be lowered appropriately and the current diagnostic criteria still needed improvement.


Assuntos
Coqueluche , Criança , Pré-Escolar , Hospitalização , Humanos , Incidência , Lactente , Estudos Retrospectivos , Vacinação , Coqueluche/diagnóstico , Coqueluche/epidemiologia
17.
BMC Genomics ; 21(1): 601, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867669

RESUMO

BACKGROUND: It has been reported that nitric oxide (NO) could ameliorate cadmium (Cd) toxicity in tall fescue; however, the underlying mechanisms of NO mediated Cd detoxification are largely unknown. In this study, we investigated the possible molecular mechanisms of Cd detoxification process by comparative transcriptomic and metabolomic approaches. RESULTS: The application of Sodium nitroprusside (SNP) as NO donor decreased the Cd content of tall fescue by 11% under Cd stress (T1 treatment), but the Cd content was increased by 24% when treated with Carboxy-PTIO (c-PTIO) together with Nitro-L-arginine methyl ester (L-NAME) (T2 treatment). RNA-seq analysis revealed that 904 (414 up- and 490 down-regulated) and 118 (74 up- and 44 down-regulated) DEGs were identified in the T1 vs Cd (only Cd treatment) and T2 vs Cd comparisons, respectively. Moreover, metabolite profile analysis showed that 99 (65 up- and 34-down- regulated) and 131 (45 up- and 86 down-regulated) metabolites were altered in the T1 vs Cd and T2 vs Cd comparisons, respectively. The integrated analyses of transcriptomic and metabolic data showed that 81 DEGs and 15 differentially expressed metabolites were involved in 20 NO-induced pathways. The dominant pathways were antioxidant activities such as glutathione metabolism, arginine and proline metabolism, secondary metabolites such as flavone and flavonol biosynthesis and phenylpropanoid biosynthesis, ABC transporters, and nitrogen metabolism. CONCLUSIONS: In general, the results revealed that there are three major mechanisms involved in NO-mediated Cd detoxification in tall fescue, including (a) antioxidant capacity enhancement; (b) accumulation of secondary metabolites related to cadmium chelation and sequestration; and (c) regulation of cadmium ion transportation, such as ABC transporter activation. In conclusion, this study provides new insights into the NO-mediated cadmium stress response.


Assuntos
Adaptação Fisiológica , Cádmio/metabolismo , Festuca/genética , Metaboloma , Óxido Nítrico/metabolismo , Transcriptoma , Cádmio/toxicidade , Festuca/metabolismo , Estresse Fisiológico
18.
Eur J Immunol ; 49(1): 42-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466171

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a critical RNA virus sensor that initiates antiviral immune response through K63-linked ubiquitination. In this study, we demonstrated USP14, a deubiquitinating enzyme, as a negative regulator in antiviral responses by directly deubiquitinating K63-linked RIG-I. USP14 knockdown significantly enhanced RIG-I-triggered type I IFN signaling and inhibited vesicular stomatitis virus (VSV) replication both in mouse peritoneal macrophages and THP1 cells. USP14 overexpression in HeLa cells attenuated RIG-I-triggered IFN-ß expression and promoted VSV replication. Besides, USP14-specific inhibitor, IU1, increased RIG-I-mediated type I IFN production and antiviral responses in vitro and in vivo. In addition, USP14 could interact with RIG-I and remove RIG-I K63-linked polyubiquitination chains. This article is the first to report that USP14 acts as a negative regulator in antiviral response through deubiquitinating K63-linked RIG-I. These findings provide insights into a potential new therapy targeting USP14 for RNA virus-related diseases.


Assuntos
Macrófagos/imunologia , Infecções por Rhabdoviridae/imunologia , Ubiquitina Tiolesterase/metabolismo , Vesiculovirus/fisiologia , Animais , Proteína DEAD-box 58/metabolismo , Feminino , Células HeLa , Humanos , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Receptores Imunológicos , Transdução de Sinais , Células THP-1 , Ubiquitina Tiolesterase/genética , Ubiquitinação , Replicação Viral
19.
J Exp Zool B Mol Dev Evol ; 334(2): 77-87, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31990140

RESUMO

Arginine methylation is an important posttranslational modification and catalyzed by a family of protein arginine methyltransferases (PRMTs). PRMT7 is the type III PRMT and produces solely monomethylarginine products. PRMT7 has been found to play important roles in multiple biological processes in mammals. However, the expression pattern and function of Prmt7 remain largely unknown in fish. In this study, we characterized the medaka prmt7 gene and determined its expression pattern and function during embryogenesis and germ cell development. The results showed that the chromosomal location and gene structure of medaka prmt7 were similar to its mammalian orthologs. Comparisons of deduced amino acid sequences indicated that medaka Prmt7 was a homolog of human PRMT7 with two methyltransferase domains. Reverse transcription-polymerase chain reaction (RT-PCR) and real time RT-PCR revealed that medaka prmt7 had maternal origin with continuous and dynamical expression during embryonic development. Whole-mount in situ hybridization analysis observed that the transcripts of prmt7 were ubiquitous at morula and gastrula stage, and were later riched in the brain and otic vesicles during embryogenesis. In the adult stage, prmt7 messenger RNA was detected in all examined tissues with the high levels in the ovary and testis. The expression of prmt7 in the gonads was restricted to oocytes of the ovary and spermatids/sperm of the testis. Functional analysis showed that knockdown of medaka prmt7 did not reduce the total number of primordial germ cells (PGCs) in vivo but significantly affected PGCs distribution during embryonic development. These results indicate that prmt7 may be involved in germ cell development in medaka.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Oryzias/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Oryzias/embriologia , Oryzias/genética , Filogenia , Proteína-Arginina N-Metiltransferases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Molecules ; 25(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013155

RESUMO

Epigenetic modifications (or epigenetic tags) on DNA and histones not only alter the chromatin structure, but also provide a recognition platform for subsequent protein recruitment and enable them to acquire executive instructions to carry out specific intracellular biological processes. In cells, different epigenetic-tags on DNA and histones are often recognized by the specific domains in proteins (readers), such as bromodomain (BRD), chromodomain (CHD), plant homeodomain (PHD), Tudor domain, Pro-Trp-Trp-Pro (PWWP) domain and malignant brain tumor (MBT) domain. Recent accumulating data reveal that abnormal intracellular histone modifications (histone marks) caused by tumors can be modulated by small molecule-mediated changes in the activity of the above domains, suggesting that small molecules targeting histone-mark reader domains may be the trend of new anticancer drug development. Here, we summarize the protein domains involved in histone-mark recognition, and introduce recent research findings about small molecules targeting histone-mark readers in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Código das Histonas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Domínios Proteicos/efeitos dos fármacos , Acetilação , Animais , Sistemas de Liberação de Medicamentos , Epigênese Genética , Humanos , Metilação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA