Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 290: 120558, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437909

RESUMO

The prolonged duration of chronic low back pain (cLBP) inevitably leads to changes in the cognitive, attentional, sensory and emotional processing brain regions. Currently, it remains unclear how these alterations are manifested in the interplay between brain functional and structural networks. This study aimed to predict the Oswestry Disability Index (ODI) in cLBP patients using multimodal brain magnetic resonance imaging (MRI) data and identified the most significant features within the multimodal networks to aid in distinguishing patients from healthy controls (HCs). We constructed dynamic functional connectivity (dFC) and structural connectivity (SC) networks for all participants (n = 112) and employed the Connectome-based Predictive Modeling (CPM) approach to predict ODI scores, utilizing various feature selection thresholds to identify the most significant network change features in dFC and SC outcomes. Subsequently, we utilized these significant features for optimal classifier selection and the integration of multimodal features. The results revealed enhanced connectivity among the frontoparietal network (FPN), somatomotor network (SMN) and thalamus in cLBP patients compared to HCs. The thalamus transmits pain-related sensations and emotions to the cortical areas through the dorsolateral prefrontal cortex (dlPFC) and primary somatosensory cortex (SI), leading to alterations in whole-brain network functionality and structure. Regarding the model selection for the classifier, we found that Support Vector Machine (SVM) best fit these significant network features. The combined model based on dFC and SC features significantly improved classification performance between cLBP patients and HCs (AUC=0.9772). Finally, the results from an external validation set support our hypotheses and provide insights into the potential applicability of the model in real-world scenarios. Our discovery of enhanced connectivity between the thalamus and both the dlPFC (FPN) and SI (SMN) provides a valuable supplement to prior research on cLBP.


Assuntos
Conectoma , Dor Lombar , Humanos , Dor Lombar/diagnóstico por imagem , Encéfalo , Tálamo , Imageamento por Ressonância Magnética/métodos
2.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270573

RESUMO

Since the large-scale outbreak of porcine epidemic diarrhoea (PED) in 2010, caused by the genotype 2 (G2) variant of the porcine epidemic diarrhoea virus (PEDV), pig farms in China, even those vaccinated with the G2b vaccine, have experienced infections from the G2a variant, leading to significant economic losses. This study successfully isolated the G2a strain DY2020 from positive small intestine contents (SICs) by blind passage on Vero cells for four generations. The SICs were taken from Daye, Hubei Province, China. The biological characteristics were identified by indirect immunofluorescence assay (IFA) and transmission electron microscopy (TEM). The growth kinetics of the strain on Vero cells were detected by TCID50, and the virus titre could reach 107.35 TCID50 ml-1 (SD: 5.07×106). The pathogenicity towards colostrum-deprived piglets was conducted by assessing faecal viral shedding, morphometric analysis of intestinal lesions, and immunohistochemical staining. The results showed that DY2020 was highly virulent to colostrum-deprived piglets, with severe watery diarrhoea and other clinical symptoms appeared at 6 h post-infection (h p.i.), and all died within 30 h. Pathological tissue examination results showed that the lesions mainly occurred in the intestines of piglets, causing pathological changes such as shortening of intestinal villi. In summary, the discovery of the G2a strain DY2020 in this study is of great significance for understanding Hubei PEDV and provides an important theoretical basis for the development of new efficient PEDV vaccines.


Assuntos
Vírus da Diarreia Epidêmica Suína , Chlorocebus aethiops , Animais , Suínos , Virulência , Células Vero , China , Diarreia/veterinária
3.
Microb Pathog ; 191: 106678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718954

RESUMO

A conditionally pathogenic bacterium called Bibersteinia trehalosi inhabits the upper respiratory tract of ruminants and is becoming a significant cause of pneumonia, especially in goats. In this study, we identified a gram-negative bacteria strain isolated from dead goat's lungs, which was named M01. By integrating the outcomes of its morphological and biochemical characterization with the investigation of the 16S rRNA gene sequence analysis, the isolate was identified as B. trehalosi. Based on antibiotic susceptibility tests, the isolate was shown to be resistant to ß-lactams, tetracyclines, and amphenicols. Its genome was discovered to comprise 2115 encoded genes and a circular chromosome measuring 2,345,568 bp using whole genome sequencing. Annotation of the VFBD database revealed that isolate M01 had four virulence genes encoding three virulence factors. The CARD database revealed that its genome has two antibiotic-resistance genes. Based on pathogenicity testing, isolate M01 was highly pathogenic to mice, primarily causing pneumonia, with an LD50 of 1.31 × 107 CFU/ml. Moreover, histopathology showed loss of alveolar structure and infiltration of lung inflammatory cells. Hence, the current study could provide sufficient information for prevention and control strategies for future epidemics of B. trehalosi in goat species.


Assuntos
Antibacterianos , Genoma Bacteriano , Cabras , Pulmão , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S , Fatores de Virulência , Animais , Cabras/microbiologia , RNA Ribossômico 16S/genética , Camundongos , Antibacterianos/farmacologia , Pulmão/microbiologia , Pulmão/patologia , Fatores de Virulência/genética , Doenças das Cabras/microbiologia , Sequenciamento Completo do Genoma , Filogenia , Virulência , Farmacorresistência Bacteriana , DNA Bacteriano/genética
4.
Psychol Med ; : 1-11, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38482853

RESUMO

BACKGROUND: Growing evidence points to the pivotal role of vitamin D in the pathophysiology and treatment of major depressive disorder (MDD). However, there is a paucity of longitudinal research investigating the effects of vitamin D supplementation on the brain of MDD patients. METHODS: We conducted a double-blind randomized controlled trial in 46 MDD patients, who were randomly allocated into either VD (antidepressant medication + vitamin D supplementation) or NVD (antidepressant medication + placebos) groups. Data from diffusion tensor imaging, resting-state functional MRI, serum vitamin D concentration, and clinical symptoms were obtained at baseline and after an average of 7 months of intervention. RESULTS: Both VD and NVD groups showed significant improvement in depression and anxiety symptoms but with no significant differences between the two groups. However, a greater increase in serum vitamin D concentration was found to be associated with greater improvement in depression and anxiety symptoms in VD group. More importantly, neuroimaging data demonstrated disrupted white matter integrity of right inferior fronto-occipital fasciculus along with decreased functional connectivity between right frontoparietal and medial visual networks after intervention in NVD group, but no changes in VD group. CONCLUSIONS: These findings suggest that vitamin D supplementation as adjunctive therapy to antidepressants may not only contribute to improvement in clinical symptoms but also help preserve brain structural and functional connectivity in MDD patients.

5.
Cereb Cortex ; 33(7): 3387-3400, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35851912

RESUMO

Functional homotopy, the high degree of spontaneous activity synchrony and functional coactivation between geometrically corresponding interhemispheric regions, is a fundamental characteristic of the intrinsic functional architecture of the brain. However, little is known about the genetic mechanisms underlying functional homotopy. Resting-state functional magnetic resonance imaging data from a discovery dataset (656 healthy subjects) and 2 independent cross-race, cross-scanner validation datasets (103 and 329 healthy subjects) were used to calculate voxel-mirrored homotopic connectivity (VMHC) indexing brain functional homotopy. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analysis was conducted to identify genes linked to VMHC. We found 1,001 genes whose expression measures were spatially associated with VMHC. Functional enrichment analyses demonstrated that these VMHC-related genes were enriched for biological functions including protein kinase activity, ion channel regulation, and synaptic function as well as many neuropsychiatric disorders. Concurrently, specific expression analyses showed that these genes were specifically expressed in the brain tissue, in neurons and immune cells, and during nearly all developmental periods. In addition, the VMHC-associated genes were linked to multiple behavioral domains, including vision, execution, and attention. Our findings suggest that interhemispheric communication and coordination involve a complex interaction of polygenes with a rich range of functional features.


Assuntos
Imageamento por Ressonância Magnética , Transcriptoma , Humanos , Encéfalo , Mapeamento Encefálico/métodos , Neuroimagem
6.
Cereb Cortex ; 33(5): 2328-2341, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-35640648

RESUMO

Brain structural damage is a typical feature of schizophrenia. Investigating such disease phenotype in patients with drug-naive first-episode schizophrenia (DFSZ) may exclude the confounds of antipsychotics and illness chronicity. However, small sample sizes and marked clinical heterogeneity have precluded definitive identification of gray matter volume (GMV) changes in DFSZ as well as their underlying genetic mechanisms. Here, GMV changes in DFSZ were assessed using a neuroimaging meta-analysis of 19 original studies, including 605 patients and 637 controls. Gene expression data were derived from the Allen Human Brain Atlas and processed with a newly proposed standardized pipeline. Then, we used transcriptome-neuroimaging spatial correlations to identify genes associated with GMV changes in DFSZ, followed by a set of gene functional feature analyses. Meta-analysis revealed consistent GMV reduction in the right superior temporal gyrus, right insula and left inferior temporal gyrus in DFSZ. Moreover, we found that these GMV changes were spatially correlated with expression levels of 1,201 genes, which exhibited a wide range of functional features. Our findings may provide important insights into the genetic mechanisms underlying brain morphological abnormality in schizophrenia.


Assuntos
Lesões Encefálicas , Esquizofrenia , Humanos , Substância Cinzenta , Córtex Cerebral , Encéfalo , Imageamento por Ressonância Magnética/métodos
7.
Neurosurg Focus ; 56(6): E10, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38823056

RESUMO

OBJECTIVE: Hoffmann's sign testing is a commonly used physical examination in clinical practice for patients with cervical spondylotic myelopathy (CSM). However, the pathophysiological mechanisms underlying its occurrence and development have not been thoroughly investigated. Therefore, the present study aimed to explore whether a positive Hoffmann's sign (PHS) in CSM patients is associated with spinal cord and brain remodeling and to identify potential neuroimaging biomarkers with diagnostic value. METHODS: Seventy-six patients with CSM and 40 sex- and age-matched healthy controls (HCs) underwent multimodal MRI. Based on the results of the Hoffmann's sign examination, patients were divided into two groups: those with a PHS (n = 38) and those with a negative Hoffmann's sign (NHS; n = 38). Quantification of spinal cord and brain structural and functional parameters of the participants was performed using various methods, including functional connectivity analysis, voxel-based morphometry, and atlas-based analysis based on functional MRI and structural MRI data. Furthermore, this study conducted a correlation analysis between neuroimaging metrics and neurological function and utilized a support vector machine (SVM) algorithm for the classification of PHS and NHS. RESULTS: In comparison with the NHS and HC groups, PHS patients exhibited significant reductions in the cross-sectional area and fractional anisotropy (FA) of the lateral corticospinal tract (CST), reticulospinal tract (RST), and fasciculus cuneatus, concomitant with bilateral reductions in the volume of the lateral pallidum. The functional connectivity analysis indicated a reduction in functional connectivity between the left lateral pallidum and the right angular gyrus in the PHS group. The correlation analysis indicated a significant positive association between the CST and RST FA and the volume of the left lateral pallidum in PHS patients. Furthermore, all three variables exhibited a positive correlation with the patients' motor function. Finally, using multimodal neuroimaging metrics in conjunction with the SVM algorithm, PHS and NHS were classified with an accuracy rate of 85.53%. CONCLUSIONS: This research revealed a correlation between structural damage to the pallidum and RST and the presence of Hoffmann's sign as well as the motor function in patients with CSM. Features based on neuroimaging indicators have the potential to serve as biomarkers for assessing the extent of neuronal damage in CSM patients.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Doenças da Medula Espinal , Espondilose , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Espondilose/diagnóstico por imagem , Neuroimagem/métodos , Doenças da Medula Espinal/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Idoso , Adulto , Vértebras Cervicais/diagnóstico por imagem
8.
Neuroimage ; 283: 120415, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863277

RESUMO

Previous literature has established the presence of sex differences in behavioral inhibition as well as its neural substrates and related disease risk. However, there is limited evidence that speaks directly to the question of whether or not there are sex-dependent associations between behavioral inhibition and resting-state brain function and, if so, how they are modulated by the underlying molecular mechanisms. We computed functional connectivity density (FCD) using resting-state functional MRI data to examine their associations with behavioral inhibition ability measured using a Go/No-Go task across a large cohort of 510 healthy young adults. Then, we examined the spatial relationships of the FCD correlates of behavioral inhibition with gene expression and neurotransmitter atlases to explore their potential genetic architecture and neurochemical basis. A significant negative correlation between behavioral inhibition and FCD in the left superior parietal lobule was found in females but not males. Further spatial correlation analyses demonstrated that the identified neural correlates of behavioral inhibition were associated with expression of gene categories predominantly implicating essential components of the cerebral cortex (glial cell, neuron, axon, dendrite, and synapse) and ion channel activity, as well as were linked to the serotonergic system. Our findings may not only yield important insights into the molecular mechanisms underlying the female-specific neural substrates of behavioral inhibition, but also provide a critical context for understanding how biological sex might contribute to variation in behavioral inhibition and its related disease risk.


Assuntos
Mapeamento Encefálico , Encéfalo , Adulto Jovem , Humanos , Feminino , Masculino , Encéfalo/fisiologia , Córtex Cerebral , Lobo Parietal , Inibição Psicológica
9.
Hum Brain Mapp ; 44(2): 790-800, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36206289

RESUMO

The diverse functional roles of the insula may emerge from its heavy connectivity to an extensive network of cortical and subcortical areas. Despite several previous attempts to investigate the hierarchical organization of the insula by applying the recently developed gradient approach to insula-to-whole brain connectivity data, little is known about whether and how there is variability across connectivity gradients of the insula to different cerebral systems. Resting-state functional MRI data from 793 healthy subjects were used to discover and validate functional connectivity gradients of the insula, which were computed based on its voxel-wise functional connectivity profiles to distinct cerebral systems. We identified three primary patterns of functional connectivity gradients of the insula to distinct cerebral systems. The connectivity gradients to the higher-order transmodal associative systems, including the prefrontal, posterior parietal, temporal cortices, and limbic lobule, showed a ventroanterior-dorsal axis across the insula; those to the lower-order unimodal primary systems, including the motor, somatosensory, and occipital cortices, displayed radiating transitions from dorsoanterior toward both ventroanterior and dorsoposterior parts of the insula; the connectivity gradient to the subcortical nuclei exhibited an organization along the anterior-posterior axis of the insula. Apart from complementing and extending previous literature on the heterogeneous connectivity patterns of insula subregions, the presented framework may offer ample opportunities to refine our understanding of the role of the insula in many brain disorders.


Assuntos
Mapeamento Encefálico , Córtex Cerebral , Humanos , Córtex Cerebral/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Lobo Parietal , Córtex Insular , Imageamento por Ressonância Magnética
10.
Hum Brain Mapp ; 44(7): 2815-2828, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36852603

RESUMO

The angular gyrus (AG), given its rich connectivity and its location where multisensory information converges, is a functionally and anatomically heterogeneous structure. Using the state-of-the-art functional gradient approach and transcription-neuroimaging association analysis, we sought to determine whether there is an overarching hierarchical organization of the AG and if so, how it is modulated by the underlying genetic architecture. Resting-state functional MRI data of 793 healthy subjects were obtained from discovery and validation datasets. Functional gradients of the AG were calculated based on the voxel-wise AG-to-cerebrum functional connectivity patterns. Combined with the Allen Human Brain Atlas, we examined the spatial correlations between the AG functional gradient and gene expression. The dominant gradient topography showed a dorsoanterior-ventroposterior hierarchical organization of the AG, which was related to its intrinsic geometry. Concurrently, AG functional subdivisions corresponding to canonical functional networks (behavioral domains) were distributed along the dominant gradient in a hierarchical manner, that is, from the default mode network (abstract cognition) at one extreme to the visual and sensorimotor networks (perception and action) at the other extreme. Remarkably, we established a link between the AG dominant gradient and gene expression, with two gene sets strongly contributing to this link but diverging on their functional annotation and specific expression. Our findings represent a significant conceptual advance in AG functional organization, and may introduce novel approaches and testable questions to the investigation of AG function and anatomy in health and disease.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Lobo Parietal/anatomia & histologia , Encéfalo , Cognição
11.
BMC Microbiol ; 23(1): 305, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875813

RESUMO

BACKGROUND: Despite advances in our understanding of the critical role of the microbiota in stroke patients, the oral microbiome has rarely been reported to be associated with stroke-associated pneumonia (SAP). We sought to profile the oral microbial composition of SAP patients and to determine whether microbiome temporal instability and special taxa are associated with pneumonia progression and functional outcomes. METHODS: This is a prospective, observational, single-center cohort study that examined patients with acute ischemic stroke (AIS) who were admitted within 24 h of experiencing a stroke event. The patients were divided into three groups based on the occurrence of pneumonia and the use of mechanical ventilation: nonpneumonia group, SAP group, and ventilator-associated pneumonia (VAP) group. We collected oral swabs at different time points post-admission and analyzed the microbiota using 16 S rRNA high-throughput sequencing. The microbiota was then compared among the three groups. RESULTS: In total, 104 nonpneumonia, 50 SAP and 10 VAP patients were included in the analysis. We found that SAP and VAP patients exhibited significant dynamic differences in the diversity and composition of the oral microbiota and that the magnitude of this dysbiosis and instability increased during hospitalization. Then, by controlling the potential effect of all latent confounding variables, we assessed the changes associated with pneumonia after stroke and explored patients with a lower abundance of Streptococcus were more likely to suffer from SAP. The logistic regression analysis revealed that an increase in specific taxa in the phylum Actinobacteriota was linked to a higher risk of poor outcomes. A model for SAP patients based on oral microbiota could accurately predict 30-day clinical outcomes after stroke onset. CONCLUSIONS: We concluded that specific oral microbiota signatures could be used to predict illness development and clinical outcomes in SAP patients. We proposed the potential of the oral microbiota as a non-invasive diagnostic biomarker in the clinical management of SAP patients. CLINICAL TRIAL REGISTRATION: NCT04688138. Registered 29/12/2020, https://clinicaltrials.gov/ct2/show/NCT04688138 .


Assuntos
AVC Isquêmico , Pneumonia Associada à Ventilação Mecânica , Acidente Vascular Cerebral , Humanos , Estudos de Coortes , Disbiose/complicações , AVC Isquêmico/complicações , Acidente Vascular Cerebral/complicações , Estudos Prospectivos
12.
Psychol Med ; 53(9): 4032-4045, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35362398

RESUMO

BACKGROUND: Vitamin D is engaged in various neural processes, with low vitamin D linked to depression and cognitive dysfunction. There are gender differences in depression and vitamin D level. However, the relationship between depression, gender, vitamin D, cognition, and brain function has yet to be determined. METHODS: One hundred and twenty-two patients with major depressive disorder (MDD) and 119 healthy controls underwent resting-state functional MRI and fractional amplitude of low-frequency fluctuations (fALFF) was calculated to assess brain function. Serum concentration of vitamin D (SCVD) and cognition (i.e. prospective memory and sustained attention) were also measured. RESULTS: We found a significant group-by-gender interaction effect on SCVD whereby MDD patients showed a reduction in SCVD relative to controls in females but not males. Concurrently, there was a female-specific association of SCVD with cognition and MDD-related fALFF alterations in widespread brain regions. Remarkably, MDD- and SCVD-related fALFF changes mediated the relation between SCVD and cognition in females. CONCLUSION: Apart from providing insights into the neural mechanisms by which low vitamin D contributes to cognitive impairment in MDD in a gender-dependent manner, these findings might have clinical implications for assignment of female patients with MDD and cognitive dysfunction to adjuvant vitamin D supplementation therapy, which may ultimately advance a precision approach to personalized antidepressant choice.


Assuntos
Disfunção Cognitiva , Transtorno Depressivo Maior , Humanos , Feminino , Encéfalo/diagnóstico por imagem , Cognição , Disfunção Cognitiva/etiologia , Vitamina D , Imageamento por Ressonância Magnética
13.
Psychol Med ; : 1-13, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36601814

RESUMO

BACKGROUND: Extensive research has shown abnormal cerebral blood flow (CBF) in patients with major depressive disorder (MDD) that is a heritable disease. The objective of this study was to investigate the genetic mechanisms of CBF abnormalities in MDD. METHODS: To achieve a more thorough characterization of CBF changes in MDD, we performed a comprehensive neuroimaging meta-analysis of previous literature as well as examined group CBF differences in an independent sample of 133 MDD patients and 133 controls. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were conducted to identify genes whose expression correlated with CBF changes in MDD, followed by a set of gene functional feature analyses. RESULTS: We found increased CBF in the reward circuitry and default-mode network and decreased CBF in the visual system in MDD patients. Moreover, these CBF changes were spatially associated with expression of 1532 genes, which were enriched for important molecular functions, biological processes, and cellular components of the cerebral cortex as well as several common mental disorders. Concurrently, these genes were specifically expressed in the brain tissue, in immune cells and neurons, and during nearly all developmental stages. Regarding behavioral relevance, these genes were associated with domains involving emotion and sensation. In addition, these genes could construct a protein-protein interaction network supported by 60 putative hub genes with functional significance. CONCLUSIONS: Our findings suggest a cerebral perfusion redistribution in MDD, which may be a consequence of complex interactions of a wide range of genes with diverse functional features.

14.
J Psychiatry Neurosci ; 48(6): E421-E430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37935475

RESUMO

BACKGROUND: Psychosocial interventions have emerged as an important component of a comprehensive therapeutic approach in early-onset schizophrenia, typically representing a more severe form of the disorder. Despite the feasibility and efficacy of Theory of Mind (ToM) psychotherapy for schizophrenia, relatively little is known regarding the neural mechanism underlying its effect on early-onset schizophrenia. METHODS: We performed a randomized, active controlled trial in patients with early-onset schizophrenia, who were randomly allocated into either an intervention (ToM psychotherapy) or an active control (health education) group. Diffusion tensor imaging data were collected to construct brain structural networks, with both global and regional topological properties measured using graph theory. RESULTS: We enrolled 28 patients with early-onset schizophrenia in our study. After 5 weeks of treatment, both the intervention and active control groups showed significant improvement in psychotic symptoms, yet the improvement was greater in the intervention group. Importantly, in contrast with no brain structural network change after treatment in the active control group, the intervention group showed increased nodal centrality of the left insula that was associated with psychotic symptom improvement. LIMITATIONS: We did not collect important information concerning the participants' cognitive abilities, particularly ToM performance. CONCLUSION: These findings suggest a potential neural mechanism by which ToM psychotherapy exerts a beneficial effect on early-onset schizophrenia via strengthening the coordination capacity of the insula in brain structural networks, which may provide a clinically translatable biomarker for monitoring or predicting responses to ToM psychotherapy.Clinical trial registration: NCT05577338; ClinicalTrials.gov.


Assuntos
Esquizofrenia , Teoria da Mente , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/terapia , Esquizofrenia/complicações , Imagem de Tensor de Difusão , Teoria da Mente/fisiologia , Percepção Social , Psicoterapia
15.
Eur J Neurol ; 30(4): 892-901, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36583634

RESUMO

BACKGROUND AND PURPOSE: As psychosis is associated with decreased quality of life, increased institutionalization, and mortality in Parkinson disease (PD), it is essential to identify individuals at risk for future psychosis. This longitudinal study aimed to investigate whether diffusion tensor imaging (DTI) metrics of white matter hold independent utility for predicting future psychosis in PD, and whether they could be combined with clinical predictors to improve the prognostication of PD psychosis. METHODS: This study included 123 newly diagnosed PD patients collected in the Parkinson's Progression Markers Initiative. Tract-based spatial statistics were used to compare baseline DTI metrics between PD patients who developed psychosis and those who did not during follow-up. Binary logistic regression analyses were performed to identify the clinical and white matter markers predictive of psychosis. RESULTS: Among DTI measures, both higher baseline whole brain (odds ratio [OR] = 1.711, p = 0.016) free water (FW) and visual processing system (OR = 1.680, p < 0.001) FW were associated with an increased risk of future psychosis. Baseline FW remained a significant indicator of future psychosis in PD after controlling for clinical predictors. Moreover, the accuracy of prediction of psychosis using clinical predictors alone (area under the curve [AUC] = 0.742, 95% confidence interval [CI] = 0.655-0.816) was significantly improved by the addition of the visual processing system FW (AUC = 0.856, 95% CI = 0.781-0.912; Delong method, p = 0.022). CONCLUSIONS: Baseline FW of the visual processing system incurs an independent risk of future psychosis in PD, thus providing an opportunity for multiple-modality marker models to include a white matter marker.


Assuntos
Doença de Parkinson , Transtornos Psicóticos , Substância Branca , Humanos , Doença de Parkinson/complicações , Imagem de Tensor de Difusão/métodos , Estudos Longitudinais , Qualidade de Vida , Transtornos Psicóticos/diagnóstico , Percepção Visual , Água
16.
BMC Neurol ; 23(1): 169, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106317

RESUMO

BACKGROUND: There is bidirectional communication between the gut microbiota and the brain. Empirical evidence has demonstrated sex differences in both the gut microbiome and the brain. However, the effects of sex on the gut microbiota-brain associations have yet to be determined. We aim to elucidate the sex-specific effects of gut microbiota on brain and cognition. METHODS: One hundred fifty-seven healthy young adults underwent brain structural, perfusion, functional and diffusion MRIs to measure gray matter volume (GMV), cerebral blood flow (CBF), functional connectivity strength (FCS) and white matter integrity, respectively. Fecal samples were collected and 16S amplicon sequencing was utilized to assess gut microbial diversity. Correlation analyses were conducted to test for sex-dependent associations between microbial diversity and brain imaging parameters, and mediation analysis was performed to further characterize the gut microbiota-brain-cognition relationship. RESULTS: We found that higher gut microbial diversity was associated with higher GMV in the right cerebellum VI, higher CBF in the bilateral calcarine sulcus yet lower CBF in the left superior frontal gyrus, higher FCS in the bilateral paracentral lobule, and lower diffusivity in widespread white matter regions in males. However, these associations were absent in females. Of more importance, these neuroimaging biomarkers significantly mediated the association between gut microbial diversity and behavioral inhibition in males. CONCLUSIONS: These findings highlight sex as a potential influential factor underlying the gut microbiota-brain-cognition relationship, and expose the gut microbiota as a biomarker-driven and sex-sensitive intervention target for mental disorders with abnormal behavioral inhibition.


Assuntos
Microbioma Gastrointestinal , Adulto Jovem , Humanos , Masculino , Feminino , Microbioma Gastrointestinal/fisiologia , Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
17.
BMC Cardiovasc Disord ; 23(1): 195, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061678

RESUMO

BACKGROUND: To assess the predictive accuracy of the stress hyperglycemia ratio (SHR) for in-hospital major adverse cardiovascular and cerebrovascular events (MACCE) in patients with ST-segment elevation myocardial infarction (STEMI). METHODS: A total of 1,944 patients were enrolled within 24 h of a new STEMI diagnosis. The SHR was obtained by dividing the blood glucose level at admission by the estimated average glucose. MACCE were defined as acute cerebral infarction, mechanical complications of myocardial infarction, cardiogenic shock, and all-cause death. Patients were then categorized into the MACCE and non-MACCE groups according to the occurrence of in-hospital MACCE. Propensity score matching was used to balance confounding factors, and logistic regression was used to identify the potential predictive factors for MACCE. RESULTS: A total of 276 patients were included after 1:1 matching, and the confounding factors were balanced between the two groups. The SHR was an independent predictor of in-hospital MACCE (odds ratio = 10.06, 95% confidence interval: 4.16-27.64, P < 0.001), while blood glucose at admission was not. The SHR was also an independent predictor for in-hospital MACCE in nondiabetic patients with STEMI (odds ratio = 11.26, 95% confidence interval: 3.05-55.21, P < 0.001). CONCLUSION: SHR is an independent predictor of in-hospital MACCE in patients with acute STEMI, especially in nondiabetic patients.


Assuntos
Hiperglicemia , Infarto do Miocárdio , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Glicemia , Intervenção Coronária Percutânea/efeitos adversos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Hiperglicemia/complicações , Hiperglicemia/diagnóstico , Hospitais , Fatores de Risco , Resultado do Tratamento
18.
Cereb Cortex ; 32(22): 5132-5144, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-35106539

RESUMO

Neuronal oscillations within certain frequency bands are assumed to associate with specific neural processes and cognitive functions. To examine this hypothesis, transcriptome-neuroimaging spatial correlation analysis was applied to resting-state functional magnetic resonance imaging data from 793 healthy individuals and gene expression data from the Allen Human Brain Atlas. We found that expression measures of 336 genes were correlated with fractional amplitude of low-frequency fluctuations (fALFF) in the slow-4 band (0.027-0.073 Hz), whereas there were no expression-fALFF correlations for the other frequency bands. Furthermore, functional enrichment analyses showed that these slow-4 fALFF-related genes were mainly enriched for ion channel, synaptic function, and neuronal system as well as many neuropsychiatric disorders. Specific expression analyses demonstrated that these genes were specifically expressed in brain tissue, in neurons, and during the late stage of cortical development. Concurrently, the fALFF-related genes were linked to multiple behavioral domains, including dementia, attention, and emotion. In addition, these genes could construct a protein-protein interaction network supported by 30 hub genes. Our findings of a frequency-dependent genetic modulation of spontaneous neuronal activity may support the concept that neuronal oscillations within different frequency bands capture distinct neurobiological processes from the perspective of underlying molecular mechanisms.


Assuntos
Imageamento por Ressonância Magnética , Transcriptoma , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico/métodos , Neurônios
19.
Cereb Cortex ; 32(10): 2063-2078, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34607357

RESUMO

The human visual cortex is a heterogeneous entity that has multiple subregions showing substantial variability in their functions and connections. We aimed to identify genes associated with resting-state functional connectivity (rsFC) of visual subregions using transcriptome-neuroimaging spatial correlations in discovery and validation datasets. Results showed that rsFC of eight visual subregions were associated with expression measures of eight gene sets, which were specifically expressed in brain tissue and showed the strongest correlations with visual behavioral processes. Moreover, there was a significant divergence in these gene sets and their functional features between medial and lateral visual subregions. Relative to those associated with lateral subregions, more genes associated with medial subregions were found to be enriched for neuropsychiatric diseases and more diverse biological functions and pathways, and to be specifically expressed in multiple types of neurons and immune cells and during the middle and late stages of cortical development. In addition to shared behavioral processes, lateral subregion associated genes were uniquely correlated with high-order cognition. These findings of commonalities and differences in the identified rsFC-related genes and their functional features across visual subregions may improve our understanding of the functional heterogeneity of the visual cortex from the perspective of underlying genetic architecture.


Assuntos
Imageamento por Ressonância Magnética , Córtex Visual , Encéfalo , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Neuroimagem , Córtex Visual/diagnóstico por imagem
20.
Chem Biodivers ; 20(7): e202300275, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37317928

RESUMO

Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities. The Phomopsis sp. LGT-5 was obtained through tissue block and repeatedly crossed methods from Tripterygium wilfordii Hook. F. The antibacterial experiments of LGT-5 showed that it has high inhibitory activity against Staphylococcus aureus and Pseudomonas aeruginosa, and moderate inhibitory activity against Candida albicans. To research the generation of the antibacterial phenomenon of LGT-5 and provide support for further research and application, the whole genome sequencing (WGS) of LGT-5 was obtained by single-molecule real-time DNA sequencing platform Pacific Biosciences (PacBio) sequencing and Illumina paired-end sequencing. The final assembled LGT-5 genome is 54.79 Mb with a contig N50 of 290.07 kb; in addition, its secondary metabolites were detected through HPLC-Q-ToF-MS/MS. By comparing its MS/MS data, the secondary metabolites were analyzed based on visual network maps obtained on the Global Natural Products Social Molecular Networking (GNPS). The analysis results showed that the secondary metabolites of LGT-5 were triterpenes and various cyclic dipeptides.


Assuntos
Phomopsis , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Sequenciamento Completo do Genoma , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA