Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Plant Physiol ; 195(1): 728-744, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38394457

RESUMO

Chlorophyll degradation and carotenoid biosynthesis, which occur almost simultaneously during fruit ripening, are essential for the coloration and nutritional value of fruits. However, the synergistic regulation of these 2 processes at the transcriptional level remains largely unknown. In this study, we identified a WRKY transcription factor, CrWRKY42, from the transcriptome data of the yellowish bud mutant "Jinlegan" ([Citrus unshiu × C. sinensis] × C. reticulata) tangor and its wild-type "Shiranui" tangor, which was involved in the transcriptional regulation of both chlorophyll degradation and carotenoid biosynthesis pathways. CrWRKY42 directly bound to the promoter of ß-carotene hydroxylase 1 (CrBCH1) and activated its expression. The overexpression and interference of CrWRKY42 in citrus calli demonstrated that CrWRKY42 promoted carotenoid accumulation by inducing the expression of multiple carotenoid biosynthetic genes. Further assays confirmed that CrWRKY42 also directly bound to and activated the promoters of the genes involved in carotenoid biosynthesis, including phytoene desaturase (CrPDS) and lycopene ß-cyclase 2 (CrLCYB2). In addition, CrWRKY42 could bind to the promoters of NONYELLOW COLORING (CrNYC) and STAY-GREEN (CrSGR) and activate their expression, thus promoting chlorophyll degradation. The overexpression and silencing of CrWRKY42 in citrus fruits indicated that CrWRKY42 positively regulated chlorophyll degradation and carotenoid biosynthesis by synergistically activating the expression of genes involved in both pathways. Our data revealed that CrWRKY42 acts as a positive regulator of chlorophyll degradation and carotenoid biosynthesis to alter the conversion of citrus fruit color. Our findings provide insight into the complex transcriptional regulation of chlorophyll and carotenoid metabolism during fruit ripening.


Assuntos
Carotenoides , Clorofila , Citrus , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Carotenoides/metabolismo , Citrus/genética , Citrus/metabolismo , Clorofila/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética
2.
Anal Chem ; 96(27): 10943-10952, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38918973

RESUMO

Both controllable regulation of the conformational structure of a polypeptide and specific recognition of an amino acid are still arduous challenges. Here, a novel dual-mode (electrochemical and colorimetric) biosensor was built for arginine (Arg) recognition based on a conformation switch, utilizing controllable and synergistic self-assembly of a ferrocene-grafted hexadecapeptide (P16Fc) with gold nanoparticles (AuNPs). Benefiting from the flexibility and unique topological structure of P16Fc formed nanospheres, the assembly and disassembly can undergo a conformation transition induced by Arg through controlling the distance and number of Fc detached from the gold surface, producing on-off electrical signals. Also, they can induce aggregation and dispersion of AuNPs in solution, causing a color change. The mechanism of Arg recognition with polypeptide conformation regulation was well explored by combining microstructure characterizations with molecular mechanics calculations. The electrochemical and colorimetric assays for Arg were successfully established in sensitive and selective manner, not only obtaining a very low detection limit, but also effectively eliminating the interference from other amino acids and overcoming the limitation of AuNP aggregation. Notably, the conformational change-based assay with the peptide regulated by the target will make a powerful tool for the amino acid biosensing and health diagnosis.


Assuntos
Arginina , Técnicas Eletroquímicas , Compostos Ferrosos , Ouro , Nanopartículas Metálicas , Metalocenos , Peptídeos , Arginina/química , Compostos Ferrosos/química , Metalocenos/química , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Conformação Proteica , Limite de Detecção
3.
Plant Physiol ; 193(1): 519-536, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37224514

RESUMO

Citrus, 1 of the largest fruit crops with global economic and nutritional importance, contains fruit known as hesperidium with unique morphological types. Citrus fruit ripening is accompanied by chlorophyll degradation and carotenoid biosynthesis, which are indispensably linked to color formation and the external appearance of citrus fruits. However, the transcriptional coordination of these metabolites during citrus fruit ripening remains unknown. Here, we identified the MADS-box transcription factor CsMADS3 in Citrus hesperidium that coordinates chlorophyll and carotenoid pools during fruit ripening. CsMADS3 is a nucleus-localized transcriptional activator, and its expression is induced during fruit development and coloration. Overexpression of CsMADS3 in citrus calli, tomato (Solanum lycopersicum), and citrus fruits enhanced carotenoid biosynthesis and upregulated carotenogenic genes while accelerating chlorophyll degradation and upregulating chlorophyll degradation genes. Conversely, the interference of CsMADS3 expression in citrus calli and fruits inhibited carotenoid biosynthesis and chlorophyll degradation and downregulated the transcription of related genes. Further assays confirmed that CsMADS3 directly binds and activates the promoters of phytoene synthase 1 (CsPSY1) and chromoplast-specific lycopene ß-cyclase (CsLCYb2), 2 key genes in the carotenoid biosynthetic pathway, and STAY-GREEN (CsSGR), a critical chlorophyll degradation gene, which explained the expression alterations of CsPSY1, CsLCYb2, and CsSGR in the above transgenic lines. These findings reveal the transcriptional coordination of chlorophyll and carotenoid pools in the unique hesperidium of Citrus and may contribute to citrus crop improvement.


Assuntos
Citrus , Solanum lycopersicum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Citrus/genética , Citrus/metabolismo , Clorofila/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Carotenoides/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo
4.
Plant Physiol ; 192(4): 3134-3151, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37165714

RESUMO

Gummosis is 1 of the most common and destructive diseases threatening global peach (Prunus persica) production. Our previous studies have revealed that ethylene and methyl jasmonate enhance peach susceptibility to Lasiodiplodia theobromae, a virulent pathogen inducing gummosis; however, the underlying molecular mechanisms remain obscure. Here, 2 ethylene response factors (ERFs), PpERF98 and PpERF1, were identified as negative regulators in peach response to L. theobromae infection. Expression of 2 putative paralogs, PpERF98-1/2, was dramatically induced by ethylene and L. theobromae treatments and accumulated highly in the gummosis-sensitive cultivar. Silencing of PpERF98-1/2 increased salicylic acid (SA) content and pathogenesis-related genes PpPR1 and PpPR2 transcripts, conferring peach resistance to L. theobromae, whereas peach and tomato (Solanum lycopersicum) plants overexpressing either of PpERF98-1/2 showed opposite changes. Also, jasmonic acid markedly accumulated in PpERF98-1/2-silenced plants, but reduction in PpPR3, PpPR4, and PpCHI (Chitinase) transcripts indicated a blocked signaling pathway. PpERF98-1 and 2 were further demonstrated to directly bind the promoters of 2 putative paralogous PpERF1 genes and to activate the ERF branch of the jasmonate/ethylene signaling pathway, thus attenuating SA-dependent defenses. The lesion phenotypes of peach seedlings overexpressing PpERF1-1/2 and PpERF98-1/2 were similar. Furthermore, PpERF98-1/2 formed homodimers/heterodimers and interacted with the 2 PpERF1 proteins to amplify the jasmonate/ethylene signaling pathway, as larger lesions were observed in peach plants cooverexpressing PpERF98 with PpERF1 relative to individual PpERF98 overexpression. Overall, our work deciphers an important regulatory network of ethylene-mediated peach susceptibility to L. theobromae based on a PpERF98-PpERF1 transcriptional cascade, which could be utilized as a potential target for genetic engineering to augment protection against L. theobromae-mediated diseases in crops and trees.


Assuntos
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Etilenos/metabolismo , Plantas
5.
Plant Dis ; 107(7): 2205-2208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36947835

RESUMO

Botryosphaeria dothidea is a worldwide pathogenic fungus that causes stem canker, leaf dieback, and fruit rot on a large number of crops and trees. Gummosis caused by B. dothidea is one of the most prevalent and devastating diseases on peach in southern China. This study reported a high-quality and well-annotated genome sequence of B. dothidea strain XNHG241. The findings can be used as a reference for studying fungal biology, pathogenic mechanism of B. dothidea, and the interaction between B. dothidea and host, and eventually facilitate peach gummosis management.


Assuntos
Ascomicetos , Doenças das Plantas , Doenças das Plantas/microbiologia , Ascomicetos/genética , China
6.
Genomics ; 114(6): 110513, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36309147

RESUMO

As a worldwide major ornamental flower and a edible plant, lotus (Nelumbo nucifera) is also used as medicine and tea beverage. Here, transcriptome and metabolites of yellow (MLQS) and white (YGB) lotus cultivars during five key flower coloration stages were profiled. 2014 differentially expressed genes were detected with 11 carotenoids in lotus were identified for the first time. Then, regulatory networks between and within functional modules was reconstructed, and the correlation between module-metabolites and gene-metabolites was conducted within 3 core modules. 18 candidate genes related to the formation of yellow flower were screened out and a gene regulatory model for the flower color difference between MLQS and YGB were speculated as follows: The substrate competition between F3'H and F3'5'H and substrate specificity of FLS, together with differential expression of CCD4a and CCD4b were contribute to the differences in flavonoids and carotenoids. Besides, UGT73C2, UGT91C1-2 and SGTase, and regulation of UGTs by transcription factors PLATZ, MADS, NAC031, and MYB308 may also play a role in the upstream regulation. The following verification results indicated that functional differences existed in the coding sequences of NnCCD4b and promoters of NnCCD4a of MLQS and YGB. In all, this study preliminarily reveals the mechanism of yellow flower coloration in lotus and provides new ideas for the study of complex ornamental characters of other plants.


Assuntos
Nelumbo , Nelumbo/genética , Perfilação da Expressão Gênica
7.
Plant Physiol ; 187(2): 829-845, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608960

RESUMO

Domesticated citrus varieties are woody perennials and interspecific hybrid crops of global economic and nutritional importance. The citrus fruit "hesperidium" is a unique morphological innovation not found in any other plant lineage. Efforts to improve the nutritional quality of the fruit are predicated on understanding the underlying regulatory mechanisms responsible for fruit development, including temporal control of chlorophyll degradation and carotenoid biosynthesis. Here, we investigated the molecular basis of the navel orange (Citrus sinensis) brown flavedo mutation, which conditions flavedo that is brown instead of orange. To overcome the limitations of using traditional genetic approaches in citrus and other woody perennials, we developed a strategy to elucidate the underlying genetic lesion. We used a multi-omics approach to collect data from several genetic sources and plant chimeras to successfully decipher this mutation. The multi-omics strategy applied here will be valuable in driving future gene discovery efforts in citrus as well as in other woody perennial plants. The comparison of transcriptomic and genomic data from multiple genotypes and plant sectors revealed an underlying lesion in the gene encoding STAY-GREEN (SGR) protein, which simultaneously regulates carotenoid biosynthesis and chlorophyll degradation. However, unlike SGR of other plant species, we found that the carotenoid and chlorophyll regulatory activities could be uncoupled in the case of certain SGR alleles in citrus and thus we propose a model for the molecular mechanism underlying the brown flavedo phenotype. The economic and nutritional value of citrus makes these findings of wide interest. The strategy implemented, and the results obtained, constitute an advance for agro-industry by driving opportunities for citrus crop improvement.


Assuntos
Carotenoides/metabolismo , Clorofila/metabolismo , Citrus sinensis/metabolismo , Frutas/metabolismo
8.
Plant Cell Physiol ; 62(3): 482-493, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33493291

RESUMO

Carotenoids provide precursors for the biosynthesis of strigolactones, which are a new class of hormones that are essential in phosphate (Pi) signaling during plant development. Carotenoid metabolism is a finely tuned pathway, but our understanding of the regulation mechanisms is still limited. In this study, we isolated a protein designated as CsPHL3 from citrus. CsPHL3 belonged to the Pi starvation response factor (PHR)-like subclade and was upregulated by low Pi. Acting as a nucleus-localized protein with transactivation activity, CsPHL3 bound directly to activate the promoter of a key metabolic gene, lycopene ß-cyclase1 (LCYb1). Transgenic analysis revealed that the CsPHL3-overexpressing tomato plants exhibited abnormal growth, like the plants grew under limited Pi conditions. The transgenic lines showed reduced carotenoid contents and elevated expression of LCYb genes but downregulation of other key carotenogenic genes, including phytoene synthase (PSY). Moreover, CsPHL3 induced anthocyanin biosynthesis and affected Pi signaling in the transgenic plants. We further demonstrated that the expression of PSY was negatively regulated by CsPHL3 and high Pi. It is concluded that CsPHL3 is a Pi starvation response factor that negatively regulates carotenoid metabolism by modulating the expression of carotenogenic genes. Establishment of the CsPHL3-CsLCYb1 network provides new valuable knowledge of the function and underlying mechanism of PHR transcription factors and expands our understanding of the complex regulation mechanisms of carotenoid biosynthesis.


Assuntos
Carotenoides/metabolismo , Citrus sinensis/metabolismo , Fosfatos/deficiência , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Citrus sinensis/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum , Fosfatos/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
9.
J Exp Bot ; 72(8): 3028-3043, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33543257

RESUMO

Carotenoids in citrus contribute to the quality of the fruit, but the mechanism of its transcriptional regulation is fairly unknown. Here, we characterized a citrus FRUITFULL sub-clade MADS gene, CsMADS5, that was ripening-inducible and acted as a nucleus-localized trans-activator. Transient overexpression of CsMADS5 in citrus induced fruit coloration and enhanced carotenoid concentrations. The expression of carotenogenic genes including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene ß-cyclase 1 (LCYb1) was increased in the peels of fruits overexpressing CsMADS5. Similar results were observed from stable overexpression of CsMADS5 in tomato fruits and citrus calli, even though the effect of CsMADS5 on carotenoid metabolism in transgenic citrus calli was limited. Further biochemical analyses demonstrated that CsMADS5 activated the transcription of PSY, PDS, and LCYb1 by directly binding to their promoters. We concluded that CsMADS5 positively regulates carotenoid biosynthesis in fruits by directly activating the transcription of carotenogenic genes. Moreover, CsMADS5 physically interacted with a positive regulator CsMADS6, indicating that CsMADS5 may form an enhancer complex with CsMADS6 to synergistically promote carotenoid accumulation. These findings expand our understanding of the complex transcriptional regulatory hierarchy of carotenoid biosynthesis during fruit ripening.


Assuntos
Carotenoides/metabolismo , Citrus , Frutas/fisiologia , Proteínas de Plantas , Fatores de Transcrição , Citrus/genética , Citrus/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Exp Bot ; 72(8): 3137-3154, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33543285

RESUMO

Chromoplast-specific lycopene ß-cyclase (LCYb2) is a critical carotenogenic enzyme, which controls the massive accumulation of downstream carotenoids, especially provitamin A carotenoids, in citrus. Its regulatory metabolism is largely unknown. Here, we identified a group I ethylene response factor, CsERF061, in citrus by yeast one-hybrid screen with the promoter of LCYb2. The expression of CsERF061 was induced by ethylene. Transcript and protein levels of CsERF061 were increased during fruit development and coloration. CsERF061 is a nucleus-localized transcriptional activator, which directly binds to the promoter of LCYb2 and activates its expression. Overexpression of CsERF061 in citrus calli and tomato fruits enhanced carotenoid accumulation by increasing the expression of key carotenoid pathway genes, and increased the number of chromoplasts needed to sequester the elevated concentrations of carotenoids, which was accompanied by changes in the concentrations of abscisic acid and gibberellin. Electrophoretic mobility shift and dual-luciferase assays verified that CsERF061 activates the promoters of nine other key carotenoid pathway genes, PSY1, PDS, CRTISO, LCYb1, BCH, ZEP, NCED3, CCD1, and CCD4, revealing the multitargeted regulation of CsERF061. Collectively, our findings decipher a novel regulatory network of carotenoid enhancement by CsERF061, induced by ethylene, which will be useful for manipulating carotenoid accumulation in citrus and other plants.


Assuntos
Carotenoides/metabolismo , Citrus , Proteínas de Plantas , Solanum lycopersicum , Fatores de Transcrição , Citrus/genética , Citrus/metabolismo , Etilenos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
BMC Plant Biol ; 19(1): 582, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878871

RESUMO

BACKGROUND: Chimeras synthesized artificially by grafting are crucial to the breeding of perennial woody plants. 'Hongrou Huyou' (Citrus changshan-huyou + Citrus unshiu) is a new graft chimera originating from the junction where a Citrus changshan-huyou ("C") scion was top-grafted onto a stock Satsuma mandarin 'Owari' (C. unshiu, "O"). The chimera was named OCC because the cell layer constitutions were O for Layer 1(L1) and C for L2 and L3. In this study, profiles of primary metabolites, volatiles and carotenoids derived from different tissues in OCC and the two donors were investigated, with the aim of determining the relationship between the layer donors and metabolites. RESULTS: The comparison of the metabolite profiles showed that the amount and composition of metabolites were different between the peels and the juice sacs, as well as between OCC and each of the two donors. The absence or presence of specific metabolites (such as the carotenoids violaxanthin and ß-cryptoxanthin, the volatile hydrocarbon germacrene D, and the primary metabolites citric acid and sorbose) in each tissue was identified in the three phenotypes. According to principal component analysis (PCA), overall, the metabolites in the peel of the chimera were derived from donor C, whereas those in the juice sac of the chimera came from donor O. CONCLUSION: The profiles of primary metabolites, volatiles and carotenoids derived from the peels and juice sacs of OCC and the two donors were systematically compared. The content and composition of metabolites were different between the tissues and between OCC and the each of the two donors. A clear donor dominant pattern of metabolite inheritance was observed in the different tissues of OCC and was basically consistent with the layer origin; the peel of the chimera was derived from C, and the juice sacs of the chimera came from O. These profiles provide potential chemical markers for genotype differentiation, citrus breeding assessment, and donor selection during artificial chimera synthesis.


Assuntos
Quimera/metabolismo , Citrus/metabolismo , Metaboloma , Quimera/genética , Citrus/genética
12.
Plant Physiol ; 176(4): 2657-2676, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29463773

RESUMO

Although remarkable progress has been made toward understanding carotenoid biosynthesis, the mechanisms that regulate the transcription of carotenogenic genes remain poorly understood. Lycopene ß-cyclases (LCYb) are critical enzymes located at the branch point of the carotenoid biosynthetic pathway. Here, we used the promoter sequence of LCYb1 as bait in a yeast one-hybrid screen for promoter-binding proteins from sweet orange (Citrus sinensis). This screen identified a MADS transcription factor, CsMADS6, that was coordinately expressed with fruit development and coloration. Acting as a nucleus-localized transcriptional activator, CsMADS6 directly bound the promoter of LCYb1 and activated its expression. Overexpression of CsMADS6 in citrus calli increased carotenoid contents and induced the expression of LCYb1 and other carotenogenic genes, including phytoene synthase (PSY), phytoene desaturase (PDS), and carotenoid cleavage dioxygenase1 (CCD1). CsMADS6 up-regulated the expression of PSY, PDS, and CCD1 by directly binding to their promoters, which suggested the multitargeted regulation of carotenoid metabolism by CsMADS6. In addition, the ectopic expression of CsMADS6 in tomato (Solanum lycopersicum) affected carotenoid contents and the expression of carotenogenic genes. The sepals of CsMADS6-overexpressing tomato lines exhibited dramatic changes in carotenoid profiles, accompanied by changes in plastid ultrastructure. Global transcriptome analysis of transgenic sepals revealed that CsMADS6 regulates a series of pathways that promote increases in flux through the carotenoid pathway. Overall, these findings establish that CsMADS6 directly regulates LCYb1 and other carotenogenic genes to coordinately and positively modulate carotenoid metabolism in plants, which may provide strategies to improve the nutritional quality of crops.


Assuntos
Carotenoides/metabolismo , Citrus sinensis/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas/genética , Citrus sinensis/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/classificação , Fatores de Transcrição/genética
14.
Mol Genet Genomics ; 290(4): 1589-603, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25749981

RESUMO

In plants, the carotenoid cleavage dioxygenase 4 (CCD4) could target on plastoglobules and cleave specific carotenoids, producing apocarotenoids and volatile compounds. These compounds are important for color and aroma formation in fruits and flowers. In this study, five CCD4 gene members (CCD4a, b, c, d, and e) were investigated in different citrus species including mandarin, pummelo, and sweet orange. Sequence analysis showed that the CCD4 genes from all the species examined exhibited extensive allelic variability (including SNPs and frame-shift mutations). Furthermore, the distribution of the CCD4 allelic mutation sites supported our previous hypothesis that the sweet orange originated from the hybridization of mandarin and pummelo. A derived cleaved amplified polymorphic sequence (dCAPs) marker was then successfully developed based on the allelic polymorphism of CCD4c, providing an ideal molecular marker for studying the genetic relationship between citrus species. Quantitative RT-PCR analysis identified differential expression patterns for the CCD4 genes in tissues/organs, and CCD4b was shown to have a high-level expression in citrus fruit flavedos (especially those with a deep orange-reddish color). HPLC-based detection of a key component (i.e., ß-citraurin) for orange-reddish flavedo formation in different citrus revealed a positive correlation between CCD4b expression levels and the presence of ß-citraurin, suggesting that CCD4b may be responsible for ß-citraurin biosynthesis in flavedo. In summary, this study not only reinforced the anticipated roles of CCD4 genes in flavedo color formation in citrus, but also provided new information about gene expression patterns, allelic polymorphism characteristics, and sequence variability for this gene subfamily.


Assuntos
Carotenoides/metabolismo , Citrus/genética , Dioxigenases/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Citrus/classificação , Citrus/metabolismo , Dioxigenases/classificação , Dioxigenases/metabolismo , Mutação da Fase de Leitura , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , beta Caroteno/análogos & derivados , beta Caroteno/biossíntese
15.
Tree Physiol ; 44(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39113606

RESUMO

Manganese (Mn) is indispensable for plant growth, but its excessive uptake in acidic soils leads to toxicity, hampering food safety. Phosphorus (P) application is known to mitigate Mn toxicity, yet the underlying molecular mechanism remains elusive. Here, we conducted physiological and transcriptomic analyses of peach roots response to P supply under Mn toxicity. Manganese treatment disrupted root architecture and caused ultrastructural damage due to oxidative injury. Notably, P application ameliorated the detrimental effects and improved the damaged roots by preventing the shrinkage of cortical cells, epidermis and endodermis, as well as reducing the accumulation of reactive oxygen species (ROS). Transcriptomic analysis revealed the differentially expressed genes enriched in phenylpropanoid biosynthesis, cysteine, methionine and glutathione metabolism under Mn and P treatments. Phosphorus application upregulated the transcripts and activities of core enzymes crucial for lignin biosynthesis, enhancing cell wall integrity. Furthermore, P treatment activated ascorbate-glutathione cycle, augmenting ROS detoxification. Additionally, under Mn toxicity, P application downregulated Mn uptake transporter while enhancing vacuolar sequestration transporter transcripts, reducing Mn uptake and facilitating vacuolar storage. Collectively, P application prevents Mn accumulation in roots by modulating Mn transporters, bolstering lignin biosynthesis and attenuating oxidative stress, thereby improving root growth under Mn toxicity. Our findings provide novel insights into the mechanism of P-mediated alleviation of Mn stress and strategies for managing metal toxicity in peach orchards.


Assuntos
Ácido Ascórbico , Glutationa , Lignina , Manganês , Fósforo , Raízes de Plantas , Prunus persica , Manganês/metabolismo , Manganês/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Ácido Ascórbico/metabolismo , Fósforo/metabolismo , Lignina/metabolismo , Glutationa/metabolismo , Prunus persica/metabolismo , Prunus persica/efeitos dos fármacos , Prunus persica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
16.
Plant Methods ; 20(1): 113, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068421

RESUMO

BACKGROUND: With the rapid development of single-cell sequencing technology, histological studies are no longer limited to conventional homogenized tissues. Laser microdissection enables the accurate isolation of specific tissues or cells, and when combined with next-generation sequencing, it can reveal important biological processes at the cellular level. However, traditional laser microdissection techniques have often been complicated and time-consuming, and the quality of the RNA extracted from the collected samples has been inconsistent, limiting follow-up studies. Therefore, an improved, simple, and efficient laser microdissection method is urgently needed. RESULTS: We omitted the sample fixation and cryoprotectant addition steps. Instead, fresh samples were embedded in Optimal Cutting Temperature medium within 1.5 ml centrifuge tube caps, rapidly frozen with liquid nitrogen, and immediately subjected to cryosectioning. A series of section thicknesses of citrus rind were tested for RNA extraction, which showed that 18 µm thickness yielded the highest quality RNA. By shortening the dehydration time to one minute per ethanol gradient and omitting the tissue clearing step, the resulting efficient dehydration and preserved morphology ensured high-quality RNA extraction. We also propose a set of laser microdissection parameters by adjusting the laser power to optimal values, reducing the aperture size, and lowering the pulse frequency. Both the epidermal and subepidermal cells from the citrus rind were collected, and RNA extraction was completed within nine hours. Using this efficient method, the transcriptome sequencing of the isolated tissues generated high-quality data with average Q30 values and mapping rates exceeding 91%. Moreover, the transcriptome analysis revealed significant differences between the cell layers, further confirming the effectiveness of our isolation approach. CONCLUSIONS: We developed a simple and rapid laser microdissection method and demonstrated its effectiveness through a study based on citrus rind, from which we generated high-quality transcriptomic data. This fast and efficient method of cell isolation, combined with transcriptome sequencing not only contributes to precise histological studies at the cellular level in citrus but also provides a promising approach for cell-specific transcriptome analysis in a broader range of other plant tissues.

17.
Food Chem ; 444: 138613, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325085

RESUMO

'Zong Cheng' navel orange (ZC) is a brown mutant of Lane Late navel orange (LL) and emits a more pleasant odor than that of LL. However, the key volatile compound of this aroma and underlying mechanism remains unclear. In this study, sensory evaluations and volatile profiling were performed throughout fruit development to identify significant differences in sensory perception and metabolites between LL and ZC. It revealed that the sesquiterpene content varied significantly between ZC and LL. Based on aroma extract dilution and gas chromatography-olfactometry analyses, the volatile compound leading to the background aroma of LL and ZC is d-limonene, the orange note in LL was mainly attributed to octanal, whilst valencene, ß-myrcene, and (E)-ß-ocimene presented balsamic, sweet, and herb notes in ZC. Furthermore, Cs5g12900 and six potential transcription factors were identified as responsible for valencene accumulation in ZC, which is important for enhancing the aroma of ZC.


Assuntos
Citrus sinensis , Citrus , Sesquiterpenos , Compostos Orgânicos Voláteis , Citrus sinensis/genética , Odorantes/análise , Multiômica , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos Voláteis/análise
18.
Tree Physiol ; 43(11): 1933-1949, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37561416

RESUMO

The ß-cyclocitric acid (ß-CCA) is a bioactive apocarotenoid previously shown to improve drought tolerance in annual plants. However, the underlying molecular mechanism of this process remains largely elusive. Moreover, the question about the activity of ß-CCA in perennial fruit crops is still open. Here, we found that treatment of ß-CCA enhances drought tolerance in peach seedlings. The application of ß-CCA significantly increased the relative water content and root activity and reduced the electrolyte leakage of peach seedlings under drought stress. Moreover, treatment with ß-CCA under drought stress increased chlorophyll fluorescence, indicating a positive effect on photosynthesis, while also enhancing superoxide dismutase and peroxidase activity and reducing reactive oxygen species (ROS) levels. Consistent with these alterations, transcriptome analysis revealed an up-regulation of photosynthesis and antioxidant-related genes upon the application of ß-CCA under drought stress. We also detected an induction in genes related to detoxification, environmental adaptation, primary metabolism, phytohormone, phenylpropanoid and the biosynthesis of cutin, suberine and wax, which might contribute to the induction of drought resistance. Altogether, our study reveals that ß-CCA positively modulates peach drought tolerance, which is mainly mediated by enhancing photosynthesis and reducing ROS, indicating the potential of utilizing ß-CCA for drought control in peach and perhaps other fruit crops.


Assuntos
Prunus persica , Prunus persica/metabolismo , Resistência à Seca , Plântula/genética , Plântula/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fotossíntese/fisiologia , Antioxidantes/metabolismo , Secas , Estresse Fisiológico/genética
19.
J Hazard Mater ; 454: 131442, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37121032

RESUMO

The natural resistance-associated macrophage protein (NRAMP) gene family assists in the transport of metal ions in plants. However, the role and underlying physiological mechanism of NRAMP genes under heavy metal toxicity in perennial trees remain to be elucidated. In Prunus persica, five NRAMP family genes were identified and named according to their predicted phylogenetic relationships. The expression profiling analysis indicated that PpNRAMPs were significantly induced by excess manganese (Mn), iron, zinc, and cadmium treatments, suggesting their potential role in heavy metal uptake and transportation. Notably, the expression of PpNRAMP5 was tremendously increased under Mn toxicity stress. Heterologous expression of PpNRAMP5 in yeast cells also confirmed Mn transport. Suppression of PpNRAMP5 through virus-induced gene silencing enhanced Mn tolerance, which was compromised when PpNRAMP5 was overexpressed in peach. The silencing of PpNRAMP5 mitigated Mn toxicity by dramatically reducing Mn contents in roots, and effectively reduced the chlorophyll degradation and improved the photosynthetic apparatus under Mn toxicity stress. Therefore, PpNRAMP5-silenced plants were less damaged by oxidative stress, as signified by lowered H2O2 contents and O2•- staining intensity, also altered the reactive oxygen species (ROS) homeostasis by activating enzymatic antioxidants. Consistently, these physiological changes showed an opposite trend in the PpNRAMP5-overexpressed peach plants. Altogether, our findings suggest that downregulation of PpNRAMP5 markedly reduces the uptake and transportation of Mn, thus activating enzymatic antioxidants to strengthen ROS scavenging capacity and photosynthesis activity, thereby mitigating Mn toxicity in peach plants.


Assuntos
Metais Pesados , Prunus persica , Plântula , Manganês/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Filogenia , Metais Pesados/toxicidade , Metais Pesados/metabolismo , Plantas
20.
Tree Physiol ; 43(7): 1265-1283, 2023 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-36905330

RESUMO

Waterlogging is a major abiotic stress that plants encounter as a result of climate change impacts. Peach is very sensitive to hypoxia during waterlogging, which causes poor tree vigor and huge economic losses. The molecular mechanism underlying the peach response to waterlogging and reoxygenation remains unclear. Here, the physiological and molecular responses of 3-week-old peach seedlings under waterlogged and recovery conditions were comprehensively analyzed. As a result, waterlogging significantly reduced plant height and biomass with inhibition of root growth when compared with control and reoxygenation. Similar results were observed for photosynthetic activities and gaseous exchange parameters. Waterlogging increased lipid peroxidation, hydrogen peroxide, proline, glutamic acid and glutathione contents, while superoxide dismutase, peroxidases and catalase activities were decreased. The glucose and fructose contents were accumulated, contrary to sucrose which was reduced remarkably throughout the stress periods. The level of endogenous indole acetic acid (IAA) was increased in waterlogging but decreased after reoxygenation. However, the change trends of jasmonic acid (JA), cytokinins and abscisic acid (ABA) levels were opposite to IAA. In transcriptomic analysis, there were 13,343 differentially expressed genes (DEGs) with higher and 16,112 genes with lower expression. These DEGs were greatly enriched in carbohydrate metabolism, anaerobic fermentation, glutathione metabolism and IAA hormone biosynthesis under waterlogging, while they were significantly enriched in photosynthesis, reactive oxygen species scavenging, ABA and JA hormones biosynthesis in reoxygenation. Moreover, several genes related to stress response, carbohydrate metabolism and hormones biosynthesis were significantly changed in waterlogging and reoxygenation, which indicated unbalanced amino acid, carbon and fatty acid pools in peach roots. Taken together, these results suggest that glutathione, primary sugars and hormone biosynthesis and signaling might play key roles in plant response to waterlogging. Our work provides a comprehensive understanding of gene regulatory networks and metabolites in waterlogging stress and its recuperation, which will facilitate peach waterlogging control.


Assuntos
Prunus persica , Prunus persica/metabolismo , Transcriptoma , Ácido Abscísico/metabolismo , Plantas/metabolismo , Glutationa , Hormônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA