Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(16): 11653-11657, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043177

RESUMO

There are numerous examples of materials that exhibit interesting phenomena at extremely low temperatures, but the difficulty of obtaining absolute zero at high pressure in experiments is sometimes a hurdle to reveal the exact explanation of these low temperature phenomena. Based on the calculations of the phonon spectrum and Gibbs free energy of α-N2 and γ-N2 under different pressures, we found that solid nitrogen at 0 K showed a re-entrant phase transition under continuously increasing pressure. The extremely low temperature in this pressure range turned out to be the main external condition for inducing phase transition as well as phase reversal.

2.
Phys Chem Chem Phys ; 24(17): 10175-10183, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35420088

RESUMO

The absence of a bandgap in pristine graphene severely restricts its application, and there is high demand for other novel two-dimensional (2D) materials. PC6 has recently emerged as a promising 2D material with a direct band gap and ultrahigh carrier mobility. In light of the remarkable properties of an intrinsic PC6 monolayer, it would be intriguing to find out whether a doped PC6 monolayer displays properties superior to the pure system. In this study, we have performed density functional theory calculations to understand the doping effects of both P-site and C-site substitution in PC6 and, for the first time, we discovered doping-related impurity-level anomalies in this system. We successfully explained why no donor or acceptor defect states exist in the band structures of XP-PC6 (X = C, Ge, Sn, O, S, Se, or Te). In group-IV-substituted systems, these dopant states hybridize with host states near the Fermi level rather than act as acceptors, which is deemed to be a potential way to tune the mobility of PC6. In the case of group-VI substitution, the underlying mechanism relating to doping anomalies arises from excess electrons occupying antibonding states.

3.
Phys Chem Chem Phys ; 22(2): 624-627, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31822870

RESUMO

In high-pressure phase transition experiments, the crystal structure of the intermediate phase in some phase transitions is difficult to successfully measure due to the limitations of the experimental conditions. The absence of crystal structure data for the intermediate phase also makes it difficult to calculate the pressure point from the intermediate phase to the new phase by the traditional thermodynamic criterion in theoretical simulations. The Conch Criterion is employed by us to successfully verify the phase transition points by observing the reverse shifts of the DOS (electron density of states) curves for the new phase of Cu2S, PbS, PbSe and PbTe, which breaks through the constraints of the traditional criterion and realizes tracing the source of the phase transition in theoretical calculations.

4.
Phys Chem Chem Phys ; 21(43): 24070-24076, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31650994

RESUMO

The classical thermodynamic criterion for phase transition predicts whether the phase transition will occur according to whether the nth derivative of the state parameter is discontinuous, and the continuity verification of multi-order derivatives increases the difficulty and complexity of judgment for phase transition to a certain extent. Based on the reverse shifts of the DOS curves near the Fermi level, we propose a new criterion for solid-state phase transition named Conch Criterion, which has been verified in the TMD system. The new criterion can observe the occurrence of phase transition from another perspective besides the thermodynamic properties while mutually confirming the thermodynamic criterion.

5.
J Mol Model ; 27(10): 307, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34591190

RESUMO

Due to the diversity of solid nitrogen structure, its phase transition has been a hot topic for many scientists. Herein, we first studied the structural softening of rhombohedral solid nitrogen under pressure using first-principles calculations. Then, a new criterion, Egret criterion, was proposed to predict the whole process from beginning to end of structural phase transition of solid nitrogen. Based on the discussion of acoustic phonons, we concluded that the phase transition of rhombohedral solid nitrogen starts from k-point F along the [- 1, - 1, 0] direction in a-axis, and the structural phase transition velocity is slow. Also, we use the Egret criterion proposed by us to predict the emergence of ξ-N2 and the stability of ξ-N2 at 17 GPa and 22 GPa, respectively, and this result is in good agreement with the phase diagram of nitrogen.

6.
J Mol Model ; 26(4): 84, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32211979

RESUMO

The detailed illustrations of the structures, elastic properties, and Raman and IR vibration modes for [Na(H2O)(N5)]·2H2O (a) and [Mg(H2O)6(N5)2]·4H2O (b) have been presented in this investigation by using the first-principles method based on the density functional theory. Our results indicate that the active centers of both two types of the energetic metal pentazolate hydrates appear on the cyclo-N5. The bonding character of N atoms in the cyclo-N5 is shown to be covalent, and the cyclo-N5 ring can be considered as an anion. Based on the analysis of elastic properties, we conclude that complex a is easier to deform than b, and both complexes are mechanically stable. From the calculated Raman and IR vibration modes, the vibration in the region of 960-1206 cm-1 (for a) and 985-1208 cm-1 (for b) is determined by basically mixing the cyclo-N5 stretching and deformation modes. The vibrational modes of a and b in their highest frequency zones are both related to the stretching of the O-H bonds.

7.
J Mol Model ; 25(7): 182, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175440

RESUMO

The structural parameters, Raman/IR spectra, and vibrational and thermodynamic properties of α-RDX and γ-RDX were investigated by performing first-principles calculations using the CASTEP program. The obtained structural parameters and vibrational frequencies of the internal modes of α-RDX are consistent with previous results. The vibrational bands of γ-RDX in the region 300-3113 cm-1 were assigned to vibrational modes for the first time. Furthermore, the thermodynamic properties of α-RDX and γ-RDX were calculated, including the constant-volume specific heat Cv, entropy S, Helmholtz free energy F, enthalpy H, and Gibbs free energy G.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA