Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 299(2): 102889, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634847

RESUMO

Osteoporosis is a chronic skeletal condition characterized by low bone mass and deteriorated microarchitecture of bone tissue and puts tens of millions of people at high risk of fractures. New therapeutic agents like i-bodies, a class of next-generation single-domain antibodies, are needed to overcome some limitations of conventional treatments. An i-body is a human immunoglobulin scaffold with two long binding loops that mimic the shape and position of those found in shark antibodies, the variable new antigen receptors of sharks. Its small size (∼12 kDa) and long binding loops provide access to drug targets, which are considered undruggable by traditional monoclonal antibodies. Here, we have successfully identified a human receptor activator of nuclear factor-κB ligand (RANKL) i-body, ADR3, which demonstrates a high binding affinity to human RANKL (hRANKL) with no adverse effect on the survival or proliferation of bone marrow-derived macrophages. Differential scanning fluorimetry suggested that ADR3 is stable and able to tolerate a wide range of physical environments (including both temperature and pH). In addition, in vitro studies showed a dose-dependent inhibitory effect of ADR3 on osteoclast differentiation, podosome belt formation, and bone resorption activity. Further investigation on the mechanism of action of ADR3 revealed that it can inhibit hRANKL-mediated signaling pathways, supporting the in vitro functional observations. These clues collectively indicate that hRANKL antagonist ADR3 attenuates osteoclast differentiation and bone resorption, with the potential to serve as a novel therapeutic to protect against bone loss.


Assuntos
Reabsorção Óssea , Osteoclastos , Ligante RANK , Anticorpos de Domínio Único , Humanos , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Macrófagos/citologia , Macrófagos/metabolismo , Osteoclastos/citologia , Ligante RANK/metabolismo , Transdução de Sinais , Anticorpos de Domínio Único/metabolismo
2.
Trends Biochem Sci ; 44(9): 733-736, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31279651

RESUMO

Heterogeneous nuclear ribonucleoprotein K (hnRNPK) is an RNA-binding protein that regulates multiple biological processes, including paraspeckles formation and cellular signal transduction. Recently, hnRNPK has been shown to interact with SINE-derived nuclear RNA localization (SIRLOIN)-containing RNAs, and orchestrate nuclear enrichment and cellular functions of long noncoding RNAs (lncRNAs). hnRNPK-lncRNAs interaction is potentially implicated in various pathogenic disorders including tumorigenesis, and Kabuki-like, Au-Kline, and Okamoto syndromes.


Assuntos
Fissura Palatina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Hidronefrose/metabolismo , Deficiência Intelectual/metabolismo , Hipotonia Muscular/metabolismo , Síndromes Paraneoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Anormalidades Múltiplas/metabolismo , Face/anormalidades , Fácies , Doenças Hematológicas/metabolismo , Humanos , Doenças Vestibulares/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37916440

RESUMO

Lanthanum-doped titanium (La/TiO2) nano-photocatalysts were prepared using the sol-gel method and characterized by X-ray diffraction (XRD), zeta potential, and low-temperature nitrogen adsorption analyses. Ester-105, a flotation collector from beneficiation wastewater, was chosen as the target pollutant. The influence of the initial ester-105 concentration, pH, and photocatalyst dosage on the photocatalytic degradation of ester-105 was investigated. To examine the kinetics of the adsorption and photocatalytic degradation of ester-105, a Langmuir adsorption model and Langmuir-Hinshelwood kinetic models were established and discussed. The synthesized photocatalyst comprised anatase-phase TiO2, with an isoelectric point of pH = 6.5, specific surface area of 56.1626 m2·g-1, and average pore size of 7.78 nm. The maximum adsorption and the adsorption equilibrium constant of La/TiO2 for ester-105 were determined as 0.338 mg·g-1 and 1.008 L·mg-1, respectively. The first-order kinetic reaction rate constant (k) exhibited a linear relationship with the initial ester-105 concentration. The optimal pH for ester degradation was theoretically determined to be 6.95, and the optimum photocatalyst dosage was found to be 0.2739 g·L-1. Experiments confirmed that the photocatalytic degradation of ester-105 using La/TiO2 followed the Langmuir-Hinshelwood kinetics model, thereby providing a theoretical foundation for the photocatalytic degradation of ester-105 for industrial application.


Assuntos
Titânio , Águas Residuárias , Titânio/química , Cinética , Adsorção , Catálise
4.
J Cell Physiol ; 237(1): 480-488, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550600

RESUMO

Leukocyte cell-derived chemotaxin-2 (LECT2 or LECT-2), also called chondromodulin II (ChM-II or CHM2) plays a versatile role in various tissues. It was first identified as a chemotactic factor to promote the migration of neutrophils. It was also reported as a hepatokine to regulate glucose metabolism, obesity, and nonalcoholic fatty liver disease. As a secreted factor, LECT2 binds to several cell surface receptors CD209a, Tie1, and Met to regulate inflammatory reaction, fibrogenesis, vascular invasion, and tumor metastasis in various cell types. As an intracellular molecule, it is associated with LECT2-mediated amyloidosis, in which LECT2 misfolding results in insoluble fibrils in multiple tissues such as the kidney, liver, and lung. Recently, LECT2 was found to be associated with the development of rheumatoid arthritis and osteoarthritis, involving the dysregulation of osteoclasts, mesenchymal stem cells, osteoblasts, chondrocytes, and endothelial cells in the bone microenvironment. LECT2 is implicated in the development of cancers, such as hepatocellular carcinoma via MET-mediated PTP1B/Raf1/ERK signaling pathways and is proposed as a biomarker. The mechanisms by which LECT2 regulates diverse pathogenic conditions in various tissues remain to be fully elucidated. Further research to understand the role of LECT2 in a tissue tropism-dependent manner would facilitate the development of LECT2 as a biomarker for diagnosis and therapeutic target.


Assuntos
Artrite , Neoplasias , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artrite/genética , Artrite/metabolismo , Biomarcadores/metabolismo , Células Endoteliais/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Estrutura Molecular , Neoplasias/genética , Neoplasias/metabolismo , Microambiente Tumoral
5.
J Cell Physiol ; 236(1): 41-48, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32572962

RESUMO

Microfibrillar-associated proteins (MFAPs) are extracellular matrix glycoproteins, which play a role in microfibril assembly, elastinogenesis, and tissue homeostasis. MFAPs consist of five subfamily members, including MFAP1, MFAP2, MFAP3, MFAP4, and MFAP5. Among these, MFAP2 and MFAP5 are most closely related, and exhibit very limited amino acid sequence homology with MFAP1, MFAP3, and MFAP4. Gene expression profiling analysis reveals that MFAP2, MFAP5, and MFAP4 are specifically expressed in osteoblastic like cells, whereas MFAP1 and MFAP3 are more ubiquitously expressed, indicative of their diverse role in the tropism of tissues. Molecular structural analysis shows that each MFAP family member has distinct features, and functional evidence reveals discrete purposes of individual MFAPs. Animal studies indicate that MFAP2-deficient mice exhibit progressive osteopenia with elevated receptor activator of NF-κB ligand (RANKL) expression, whereas MFAP5-deficient mice are neutropenic, and MFAP4-deficient mice displayed emphysema-like pathology and the impaired formation of neointimal hyperplasia. Emerging data also suggest that MFAPs are involved in cancer progression and fat metabolism. Further understanding of tissue-specific pathophysiology of MFAPs might offer potential novel therapeutic targets for related diseases, such as skeletal and metabolic disorders, and cancers.


Assuntos
Doenças Metabólicas/genética , Neoplasias/genética , Fatores de Processamento de RNA/genética , Sequência de Aminoácidos , Animais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Hiperplasia/genética , Neointima/genética
6.
J Cell Physiol ; 236(10): 7211-7222, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33782965

RESUMO

Monocyte chemoattractant protein-1, also called chemokine (C-C motif) ligand 2 (CCL2) or small inducible cytokine A2, is an inflammatory mediator capable of recruiting monocytes, memory T cells, and dendritic cells. CCL2 is a member of the CC chemokine superfamily, which binds to its receptor, C-C motif chemokine receptor-2 (CCR2), for the induction of chemotactic activity and an increase of calcium influx. It exerts multiple effects on a variety of cells, including monocytes, macrophages, osteoclasts, basophils, and endothelial cells, and is involved in a diverse range of diseases. This review discusses the molecular structure and role of CCL2 and CCR2 in skeletal biology and disease. Molecular structure analyses reveal that CCL2 shares a conserved C-C motif; however, it has only limited sequence homology with other CCL family members. Likewise, CCR2, as a member of the G-protein-coupled seven-transmembrane receptor superfamily, shares conserved cysteine residues, but exhibits very limited sequence homology with other CCR family members. In the skeletal system, the expression of CCL2 is regulated by a variety of factors, such as parathyroid hormone/parathyroid hormone-related peptide, interleukin 1b, tumor necrosis factor-α and transforming growth factor-beta, RANKL, and mechanical forces. The interaction of CCL2 and CCR2 activates several signaling cascades, including PI3K/Akt/ERK/NF-κB, PI3K/MAPKs, and JAK/STAT-1/STAT-3. Understanding the role of CCL2 and CCR2 will facilitate the development of novel therapies for skeletal disorders, including rheumatoid arthritis, osteolysis and other inflammatory diseases related to abnormal chemotaxis.


Assuntos
Doenças Ósseas/metabolismo , Remodelação Óssea , Osso e Ossos/metabolismo , Quimiocina CCL2/metabolismo , Osteogênese , Receptores CCR2/metabolismo , Animais , Doenças Ósseas/diagnóstico , Doenças Ósseas/tratamento farmacológico , Doenças Ósseas/fisiopatologia , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Quimiocina CCL2/antagonistas & inibidores , Quimiocina CCL2/química , Humanos , Osteogênese/efeitos dos fármacos , Conformação Proteica , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/química , Transdução de Sinais , Relação Estrutura-Atividade
7.
Cell Biochem Funct ; 39(5): 588-595, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33615507

RESUMO

Whey acidic proteins (WAP) perform a diverse range of important biological functions, including proteinase activity, calcium transport and bacterial growth. The WAP four-disulphide core domain protein 1 (WFDC1) gene (also called PS20), encodes the 20 kDa prostate stromal protein (ps20), which is a member of the WAP-type four-disulphide core domain family of proteins, and exhibits characteristics of serine protease inhibitors, such as elafin and secretory leukocyte protease inhibitor. Molecular structural analysis reveals that ps20 consists of four-disulphide bonds formed by eight cysteine residues located at the carboxyl terminus of the protein. Wfdc1-null mice were found to display no overt developmental phenotype, suggesting a dispensable role in organ growth and development. However, WFDC1 was able to mediate endothelial cell migration and pericyte stabilization, which are vital for the formation of functional vascular structures. WFDC1 was also found to be downregulated in cancers and exhibited a regulatory effect on cell proliferation. In addition, it was involved in the modulation of memory T cells during human immunodeficiency virus infection. Gaining a solid understanding of the mechanisms by which WFDC1 regulates tissue homeostasis and disease processes, in a tissue specific manner, will be an important move towards the development of WFDC1/ps20 as potential therapeutic targets.


Assuntos
Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Proteínas/metabolismo , Humanos , Neoplasias/patologia , Neovascularização Patológica/patologia , Conformação Proteica , Proteínas/química , Proteínas/genética
8.
Cell Mol Life Sci ; 76(18): 3515-3523, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089746

RESUMO

Cytokine-like protein 1 (Cytl1), also named Protein C17 or C4orf4 is located on human chromosome 4p15-p16 and encodes a polypeptide of 126 amino acid residues that displays characteristics of a secretory protein. Cytl1 is expressed by a sub-population of CD34+ human mononuclear cells from bone marrow and cord blood, and by chondrocytes (cartilage-forming cells). In this review, we explore evidence suggesting that Cytl1 may be involved in the regulation of chondrogenesis, cartilage homeostasis and osteoarthritis progression, accompanied by the modulation of Sox9 and insulin-like growth factor 1 expression. In addition, Cytl1 exhibits chemotactic and pro-angiogenic biological effects. Interestingly, CCR2 (C-C chemokine receptor type 2) has been identified as a likely receptor for Cytl1, which mediates the ERK signalling pathway. Cytl1 also appears to mediate the TGF-beta-Smad signalling pathway, which is hypothetically independent of the CCR2 receptor. More recently, studies have also potentially linked Cytl1 with a variety of conditions including cardiac fibrosis, smoking, alcohol dependence risk, and tumours such as benign prostatic hypertrophy, lung squamous cell carcinoma, neuroblastoma and familial colorectal cancer. Defining the molecular structure of Cytl1 and its role in disease pathogenesis will help us to design therapeutic approaches for Cytl1-associated pathological conditions.


Assuntos
Proteínas Sanguíneas/metabolismo , Cartilagem/metabolismo , Citocinas/metabolismo , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Citocinas/química , Citocinas/genética , Humanos , Osteoartrite/metabolismo , Osteoartrite/patologia , Receptores CCR2/metabolismo , Transdução de Sinais
9.
Cell Mol Life Sci ; 76(22): 4493-4502, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31317206

RESUMO

The human chondromodulin-1 (Chm-1, Chm-I, CNMD, or Lect1) gene encodes a 334 amino acid type II transmembrane glycoprotein protein with characteristics of a furin cleavage site and a putative glycosylation site. Chm-1 is expressed most predominantly in healthy and developing avascular cartilage, and healthy cardiac valves. Chm-1 plays a vital role during endochondral ossification by the regulation of angiogenesis. The anti-angiogenic and chondrogenic properties of Chm-1 are attributed to its role in tissue development, homeostasis, repair and regeneration, and disease prevention. Chm-1 promotes chondrocyte differentiation, and is regulated by versatile transcription factors, such as Sox9, Sp3, YY1, p300, Pax1, and Nkx3.2. Decreased expression of Chm-1 is implicated in the onset and progression of osteoarthritis and infective endocarditis. Chm-1 appears to attenuate osteoarthritis progression by inhibiting catabolic activity, and to mediate anti-inflammatory effects. In this review, we present the molecular structure and expression profiling of Chm-1. In addition, we bring a summary to the potential role of Chm-1 in cartilage development and homeostasis, osteoarthritis onset and progression, and to the pathogenic role of Chm-1 in infective endocarditis and cancers. To date, knowledge of the Chm-1 receptor, cellular signalling, and the molecular mechanisms of Chm-1 is rudimentary. Advancing our understanding the role of Chm-1 and its mechanisms of action will pave the way for the development of Chm-1 as a therapeutic target for the treatment of diseases, such as osteoarthritis, infective endocarditis, and cancer, and for potential tissue regenerative bioengineering applications.


Assuntos
Cardiopatias/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Osteoartrite/metabolismo , Animais , Cartilagem/metabolismo , Homeostase/fisiologia , Humanos
10.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(6): 986-992, 2018 12 25.
Artigo em Zh | MEDLINE | ID: mdl-30583327

RESUMO

Endogenous adult neural stem cells are closely related to the normal physiological functions of the brain and many neurodegenerative diseases. Neurons are affected by factors such as extracellular microenvironment and intracellular signaling. In recent years, some specific signaling pathways have been found that affect the occurrence of neural stem cells in adult neural networks, including proliferation, differentiation, maturation, migration, and integration with host functions. In this paper, we summarize the signals and their molecular mechanisms, including the related signaling pathways, neurotrophic factors, neurotransmitters, intracellular transcription factors and epigenetic regulation of neuronal differentiation from both the extracellular and intracellular aspects, providing basic theoretical support for the treatment of central nervous system diseases through neural stem cells approach.

11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 34(3): 471-479, 2017 Jun 01.
Artigo em Zh | MEDLINE | ID: mdl-29745517

RESUMO

Bone remodeling requires an intimate cross-talk between osteoclasts and osteoblasts and is tightly coordinated with regulatory proteins that interact through complex autocrine/paracrine processes. Osteocytes, bone lining cells, osteomacs and vascular endothelial cells also regulate bone remodeling in the basic multicellular unit (BMU) via cell signaling networks of ligand-receptor complexes. In addition, through secreted and membrane-bound factors in the bone microenvironment, T and B lymphocytes mediate bone homeostasis for osteoimmunology. Osteoporosis and other bone diseases occur because multicellular communication within the BMU is disrupted. This review focuses on the roles of the cells in the BMU and the interaction between these cells and the factors involved in regulating bone remodeling at the cellular level. Understanding the process of bone remodeling and related genes could help us to lay the foundation for drug development against bone diseases.

12.
J Cell Mol Med ; 20(6): 1062-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26769343

RESUMO

After spinal cord injury (SCI), disruption of blood-spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF-induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF-induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K-Akt-Rac1 signalling pathway.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/uso terapêutico , Transdução de Sinais , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/patologia , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Cromonas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fator de Crescimento Epidérmico/administração & dosagem , Feminino , Glucose/deficiência , Humanos , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
J Cell Biochem ; 117(6): 1464-70, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27043248

RESUMO

Vacuolar proton pump H(+)-adenosine triphosphatases (V-ATPases) play an important role in osteoclast function. Further understanding of the cellular and molecular mechanisms of V-ATPase inhibition is vital for the development of anti-resorptive drugs specifically targeting osteoclast V-ATPases. In this study, we observed that bafilomycin A1, a naturally-occurring inhibitor of V-ATPases, increased the protein level of SQSTM1/p62, a known negative regulator of osteoclast formation. Consistently, we found that bafilomycin A1 diminishes the intracellular accumulation of the acidotropic probe lysotracker in osteoclast-like cells; indicative of reduced acidification. Further, bafilomycin A1 inhibits osteoclast formation with attenuation of cell fusion and multi-nucleation of osteoclast-like cells during osteoclast differentiation. Taken together, these data indicate that bafilomycin A1 attenuates osteoclast differentiation in part via increased levels of SQSTM1/p62 protein, providing further mechanistic insight into the effect of V-ATPase inhibition in osteoclasts.


Assuntos
Aminas/metabolismo , Inibidores Enzimáticos/farmacologia , Macrolídeos/farmacologia , Osteoclastos/efeitos dos fármacos , Proteína Sequestossoma-1/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Osteoclastos/citologia , Células RAW 264.7
15.
Neurochem Res ; 41(4): 813-25, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26582233

RESUMO

Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB), which leads to infiltration of blood cells, inflammatory responses and neuronal cell death, with subsequent development of spinal cord secondary damage. Recent reports pointed to an important role of retinoic acid (RA), the active metabolite of the vitamin A, in the induction of the blood-brain barrier (BBB) during human and mouse development, however, it is unknown whether RA plays a role in maintaining BSCB integrity under the pathological conditions such as SCI. In this study, we investigated the BSCB protective role of RA both in vivo and in vitro and demonstrated that autophagy are involved in the BSCB protective effect of RA. Our data show that RA attenuated BSCB permeability and also attenuated the loss of tight junction molecules such as P120, ß-catenin, Occludin and Claudin5 after injury in vivo as well as in brain microvascular endothelial cells. In addition, RA administration improved functional recovery of the rat model of trauma. We also found that RA could significantly increase the expression of LC3-II and decrease the expression of p62 both in vivo and in vitro. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB and exacerbated the loss of tight junctions. Together, our studies indicate that RA improved functional recovery in part by the prevention of BSCB disruption via the activation of autophagic flux after SCI.


Assuntos
Autofagia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/irrigação sanguínea , Tretinoína/farmacologia , Animais , Encéfalo/irrigação sanguínea , Cateninas/metabolismo , Células Cultivadas , Claudinas/metabolismo , Feminino , Humanos , Microvasos/metabolismo , Atividade Motora/efeitos dos fármacos , Ocludina/metabolismo , Permeabilidade , Ratos Sprague-Dawley , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , beta Catenina/metabolismo , delta Catenina
17.
J Transl Med ; 12: 130, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24884850

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) stress-induced apoptosis plays a major role in various diseases, including spinal cord injury (SCI). Nerve growth factor (NGF) show neuroprotective effect and improve the recovery of SCI, but the relations of ER stress-induced apoptosis and the NGF therapeutic effect in SCI still unclear. METHODS: Young adult female Sprague-Dawley rats's vertebral column was exposed and a laminectomy was done at T9 vertebrae and moderate contusion injuries were performed using a vascular clip. NGF stock solution was diluted with 0.9% NaCl and administered intravenously at a dose of 20 µg/kg/day after SCI and then once per day until they were executed. Subsequently, the rats were executed at 1d, 3 d, 7d and 14d. The locomotor activities of SCI model rats were tested by the 21-point Basso-Beattie-Bresnahan (BBB) locomotion scale, inclined plane test and footprint analysis. In addition, Western blot analysis was performed to identify the expression of ER-stress related proteins including CHOP, GRP78 and caspase-12 both in vivo and in vitro. The level of cell apoptosis was determined by TUNEL in vivo and Flow cytometry in vitro. Relative downstream signals Akt/GSK-3ß and ERK1/2were also analyzed with or without inhibitors in vitro. RESULTS: Our results demonstrated that ER stress-induced apoptosis was involved in the injury of SCI model rats. NGF administration improved the motor function recovery and increased the neurons survival in the spinal cord lesions of the model rats. NGF decreases neuron apoptosis which measured by TUNEL and inhibits the activation of caspase-3 cascade. The ER stress-induced apoptosis response proteins CHOP, GRP78 and caspase-12 are inhibited by NGF treatment. Meanwhile, NGF administration also increased expression of growth-associated protein 43 (GAP43). The administration of NGF activated downstream signals Akt/GSK-3ß and ERK1/2 in ER stress cell model in vitro. CONCLUSION: The neuroprotective role of NGF in the recovery of SCI is related to the inhibition of ER stress-induced cell death via the activation of downstream signals, also suggested a new trend of NGF translational drug development in the central neural system injuries which involved in the regulation of chronic ER stress.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Traumatismos da Medula Espinal/patologia , Estresse Fisiológico , Animais , Comportamento Animal , Retículo Endoplasmático/patologia , Feminino , Células PC12 , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo
18.
Mater Today Bio ; 24: 100919, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38298888

RESUMO

Diabetes causes a loss of sensation in the skin, so diabetics are prone to burns when using heating devices. Diabetic scalded skin is often difficult to heal due to the microenvironment of high glucose, high oxidation, and low blood perfusion. The treatment of diabetic scald mainly focuses on three aspects: 1) promote the formation of the epithelium; 2) promote angiogenesis; and 3) maintain intracellular homeostasis. In response to these three major repair factors, we developed a cadherin-responsive hydrogel combined with FGF21 and dental pulp stem cells (DPSCs) to accelerate epithelial formation by recruiting cadherin to the epidermis and promoting the transformation of N cadherin to E cadherin; promoting angiogenesis to increase wound blood perfusion; regulating the stability of lysosomal and activating autophagy to maintain intracellular homeostasis in order to comprehensively advance the recovery of diabetic scald.

19.
Front Pharmacol ; 14: 1111218, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033622

RESUMO

Parthenolide (PTL or PAR) was first isolated from Magnolia grandiflora and identified as a small molecule cancer inhibitor. PTL has the chemical structure of C15H20O3 with characteristics of sesquiterpene lactones and exhibits the biological property of inhibiting DNA biosynthesis of cancer cells. In this review, we summarise the recent research progress of medicinal PTL, including the therapeutic effects on skeletal diseases, cancers, and inflammation-induced cytokine storm. Mechanistic investigations reveal that PTL predominantly inhibits NF-κB activation and other signalling pathways, such as reactive oxygen species. As an inhibitor of NF-κB, PTL appears to inhibit several cytokines, including RANKL, TNF-α, IL-1ß, together with LPS induced activation of NF-κB and NF-κB -mediated specific gene expression such as IL-1ß, TNF-α, COX-2, iNOS, IL-8, MCP-1, RANTES, ICAM-1, VCAM-1. It is also proposed that PTL could inhibit cytokine storms or hypercytokinemia triggered by COVID-19 via blocking the activation of NF-κB signalling. Understanding the pharmacologic properties of PTL will assist us in developing its therapeutic application for medical conditions, including arthritis, osteolysis, periodontal disease, cancers, and COVID-19-related disease.

20.
Bioact Mater ; 22: 274-290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36263097

RESUMO

Spinal cord injury (SCI) is a serious clinical disease. Due to the deformability and fragility of the spinal cord, overly rigid hydrogels cannot be used to treat SCI. Hence, we used TPA and Laponite to develop a hydrogel with shear-thinning ability. This hydrogel exhibits good deformation, allowing it to match the physical properties of the spinal cord; additionally, this hydrogel scavenges ROS well, allowing it to inhibit the lipid peroxidation caused by ferroptosis. According to the in vivo studies, the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism. In addition, dental pulp stem cells (DPSCs) were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses. It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA