Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Med Virol ; 94(8): 3570-3580, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35474513

RESUMO

Cell pyroptosis has received increased attention due to the associations between innate immunity and disease, and it has become a major focal point recently due to in-depth studies of cancer. With increased research on pyroptosis, scientists have discovered that it has an essential role in viral infections, especially in the occurrence and development of some picornavirus infections. Many picornaviruses, including Coxsackievirus, a71 enterovirus, human rhinovirus, encephalomyocarditis virus, and foot-and-mouth disease virus induce pyroptosis to varying degrees. This review summarized the mechanisms by which these viruses induce cell pyroptosis, which can be an effective defense against pathogen infection. However, excessive inflammasome activation or pyroptosis also can damage the host's health or aggravate disease progression. Careful approaches that acknowledge this dual effect will aid in the exploration of picornavirus infections and the mechanisms that produce the inflammatory response. This information will promote the development of drugs that can inhibit cell pyroptosis and provide new avenues for future clinical treatment.


Assuntos
Enterovirus , Infecções por Picornaviridae , Picornaviridae , Viroses , Animais , Humanos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Picornaviridae/tratamento farmacológico , Piroptose , Replicação Viral
2.
Biosci Biotechnol Biochem ; 85(4): 834-841, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33580697

RESUMO

Schisandrin B (Sch B), a lignan compound in Schisandra, possesses antioxidant, anti-inflammatory, and antiobesity activities. The effect of Sch B on melanogenesis and molecular mechanisms are still unknown. Therefore, we aimed to investigate the antimelanogenic effects of Sch B on α-melanocyte-stimulating hormone-induced B16F10 cells and elucidate the underlying molecular mechanisms. We found that Sch B significantly suppressed melanin content and mushroom tyrosinase (TYR) activity. Sch B treatment decreased the expression of TYR, melanocyte-inducing transcription factor (MITF), tyrosinase-related protein (TRP) 1, and TRP2. Moreover, Sch B modulated the phosphorylation of p38, extracellular-regulated protein kinase, c-Jun N-terminal kinase, and cAMP-response element binding protein (CREB), implying that these pathways may be involved in suppressing melanogenesis. Furthermore, we found that Sch B decreased melanogenesis by downregulating MITF and melanogenic enzymes via MAPK and CREB pathways. Overall, these findings indicate that Sch B has the potential use in whitening.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Lignanas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melaninas/biossíntese , Melanoma Experimental/patologia , Compostos Policíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Ciclo-Octanos/farmacologia , Camundongos
3.
Exp Lung Res ; 46(6): 185-194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32362157

RESUMO

Purpose/Aim: Pulmonary fibrosis (PF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function.Objective: The present study investigated the potential protective effects of schisandrin B (Sch B) on the Wingless/Integrase-1 (Wnt) signaling pathway in attenuating inflammation and oxidative stress in ICR mice.Methods: Sixty healthy ICR mice were randomly divided into the following groups: control group, bleomycin (BLM) group, Sch B low dose (Sch B-L) group, Sch B medium dose (Sch B-M) group, Sch B high dose (Sch B-H) group, and dexamethasone (DXM) group. The expression of transforming growth factor (TGF)-ß1 was examined by ELISA. In addition, the levels of superoxide dismutase (SOD), hydroxyproline (HYP), and the total antioxidant capacity (T-AOC) were determined. The protein and mRNA levels of matrix metalloproteinase 7 (MMP7) and ß-catenin in mice were analyzed by western blot and quantitative real -quantitative time PCR (qRT-PCR), respectively.Results: Lung tissues from the BLM group exhibited significantly more inflammatory changes and a significantly greater number of collagen fibers than lung tissues from the control group. In addition, the lung tissues from these BLM-treated mice exhibited slightly increased MMP7 and ß-catenin protein expression. Lung tissues from the Sch B-H group exhibited fewer inflammatory changes and fewer collagen fibers than lung tissues from the BLM group. Furthermore, the lung tissues from the Sch B-H mice exhibited decreased HYP and TGF-ß1 levels, but increased SOD and T-AOC levels.Conclusions: The present study provided evidence that Sch B may be a potential therapeutic agent for the treatment of PF.


Assuntos
Bleomicina/farmacologia , Integrases/metabolismo , Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteína Wnt1/metabolismo , Animais , Ciclo-Octanos/farmacologia , Hidroxiprolina/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/metabolismo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
4.
J Pharmacol Sci ; 140(3): 248-254, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31400930

RESUMO

Schisandra chinensis is a hepatoprotective herb that has been used for centuries in China. Polysaccharide is one of the major active components in S. chinensis, which has been reported to improve liver injuries induced by carbon tetrachloride, alcohol, or high-fat diet. In this study, we observed the effects and corresponding mechanisms of the secondary component of Schisandra polysaccharide (acidic polysaccharide, SCAP) on a murine model of severe acute liver injury induced by acetaminophen (APAP). SCAP significantly decreased the serum alanine aminotransferase (ALT), aspartate aminotransferas (AST), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) levels, and was found to alleviate hepatic pathological alterations in the mouse model. Meanwhile, SCAP revealed a protective effects on the liver injury-related enzymes and factors, such as significantly diminished malondialdehyde (MDA) levels and glutathione (GSH) depletion, reduced ratio of B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax)/Bcl-2, prohibited cleaved caspase-3 expression, and elevated the expression of p-AMPK, p-Akt, p-glycogen synthase kinase 3ß (GSK 3ß), nuclear factor erythroid 2-derived-like 2 (Nrf 2) and heme oxygenase-1 (HO-1) proteins in the liver tissues of the mouse model. In conclusion, we speculated that the protective activities of SCAP on the APAP-induced mouse model of acute liver injury might be related to its antioxidation, anti-inflammation and anti-apoptosis properties.


Assuntos
Acetaminofen/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Schisandra/química , Alanina Transaminase/metabolismo , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases/metabolismo , Caspase 3/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Heme Oxigenase-1/metabolismo , Interleucina-1beta/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo
5.
Exp Lung Res ; 45(5-6): 157-166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31268360

RESUMO

Purpose/Aim: More and more evidences suggest that airway remodeling of fibrotic lung diseases may be associated with epithelial-mesenchymal transition (EMT) of human A549 cells induced by transforming growth factor (TGF)-ß1. Schisandrin B (Sch B) is the highest content of dibenzocyclooctadiene lignans in Schisandra chinensis. In this study, we assessed the inhibitory influences of Sch B on TGF-ß1-stimulated EMT in human A549 cells. Materials and Methods: The influences of Sch B on cell viability, invasion and metastasis in TGF-ß1-induced human A549 cells were detected by MTT, wound healing and transwell invasion assays. The expression levels of α-SMA, E-cadherin, ZEB1 and Twist1 were examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. The enrichment of H3K4me3 and H3K9me3 at the ZEB1 promoter was determined by ChIP analysis. Results: Experimental results showed that Sch B increased the expression of the epithelial phenotype marker E-cadherin and inhibited the expression of the mesenchymal phenotype marker α-SMA during EMT induced by TGF-ß1. The enhancement in invasion and migration of TGF-ß1-induced A549 cells was inhibited by Sch B. Sch B also repressed the expression of ZEB1 transcription factor in EMT, by increasing the enrichment of H3K9me3 at the ZEB1 promoter to repress its transcription while the expression of the Twist1 transcription factor was unaffected. Conclusions: Our data suggest that Sch B can prevent TGF-ß1-stimulated EMT in A549 cells through epigenetic silencing of ZEB1, which may be clinically related to the efficient treatment of EMT-associated fibrotic diseases.


Assuntos
Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Homeobox 1 de Ligação a E-box em Dedo de Zinco/antagonistas & inibidores , Células A549 , Antineoplásicos/uso terapêutico , Ciclo-Octanos/farmacologia , Ciclo-Octanos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Epigênese Genética/efeitos dos fármacos , Humanos , Lignanas/uso terapêutico , Fitoterapia , Compostos Policíclicos/uso terapêutico , Schisandra , Fator de Crescimento Transformador beta1
6.
Stem Cells ; 33(6): 1985-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25753650

RESUMO

Multiple myeloma (MM) is characterized by the impaired osteogenic differentiation of mesenchymal stromal cells (MSCs). However, the underlying molecular mechanisms are still poorly understood. Long noncoding RNAs (lncRNAs) are emerging as important regulatory molecules in tumor-suppressor and oncogenic pathways. Here we showed that MSCs from MM expressed less lncRNA MEG3 relative to those from normal donors during osteogenic differentiation. To evaluate the effect of MEG3 on osteogenesis, bone marrow MSCs with enhanced or reduced MEG3 were prepared. We observed that MEG3 knockdown significantly reduced the expression of key osteogenic markers, including Runt-related transcription factor 2, osterix, and osteocalcin, while overexpression of MEG3 enhanced their expression. Additionally, MEG3 knockdown decreased BMP4 transcription. Here we showed that MEG3 was critical for SOX2 transcriptional repression of the BMP4. MEG3, which is located near the BMP4 gene, could dissociate the transcription factor SOX2 from the BMP4 promoter. A stable complex containing the MEG3, SOX2, and the SOX2 consensus site of BMP4 suggested that MEG3 activated transcriptional activity by directly influencing SOX2 activity. By using assays such as luciferase, chromatin immunoprecipitation, and RNA immunoprecipitation, we showed that MEG3 had a critical function in a mechanism of promoter-specific transcriptional activation. These results suggested that MEG3 played an essential role in osteogenic differentiation in bone marrow MSCs, partly by activating BMP4 transcription. Our data provided novel evidence for the biological and clinical significance of lncRNA MEG3 expression as a potential biomarker for identifying patients with MM and as a potential therapeutic target in MM.


Assuntos
Proteína Morfogenética Óssea 4/genética , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Mieloma Múltiplo/metabolismo , RNA Longo não Codificante/metabolismo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Osteogênese/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Ativação Transcricional/genética , Regulação para Cima
7.
Lipids Health Dis ; 15(1): 195, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852305

RESUMO

BACKGROUND: Hepatoprotective effects of Chinese herbal medicine Schisandra Chinensis (Schisandra) have been widely investigated. However, most studies were focused on its lignan extracts. We investigated the effects of Schisandra polysaccharide (SCP) in a mouse model of non-alcoholic fatty liver disease (NAFLD), and studied its effect on sterol regulatory element binding proteins (SREBPs) and the related genes. METHODS: The mouse model of NAFLD was established by feeding mice with a high-fat diet for 16 weeks. Effect of SCP-treatment (100 mg/kg, once daily for 12 weeks) on biochemical parameters and liver histopathology was assessed. Relative levels of sterol regulatory element-binding proteins (SREBPs) and their gene expressions were determined by quantitative real-time polymerase chain reaction and Western Blot. RESULTS: SCP significantly reduced the liver index by 12.0%. Serum levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol, alanine aminotransferase and aspartate aminotransferase were decreased by 31.3, 28.3, 42.8, 20.1 and 15.5%, respectively. Serum high-density lipoprotein cholesterol was increased by 26.9%. Further, SCP lowered hepatic TC and TG content by 27.0% and 28.3%, respectively, and alleviated fatty degeneration and necrosis of liver cells. A significant downregulation of mRNA and protein expressions of hepatic lipogenesis genes, SREBP-1c, fatty acid synthase and acetyl-CoA carboxylase, and the mRNA expression of liver X receptor α (LXRα) was observed in NAFLD mice treated with SCP. SCP also significantly reduced the hepatic expression of SREBP-2 and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). CONCLUSION: These findings demonstrate the hepatoprotective effects of SCP in a mouse model of NAFLD; the effects may be mediated via downregulation of LXRα/SREBP-1c/FAS/ACC and SREBP-2/HMGCR signaling pathways in the liver.


Assuntos
Modelos Animais de Doenças , Regulação para Baixo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Polissacarídeos/farmacologia , Proteínas de Ligação a Elemento Regulador de Esterol/efeitos dos fármacos , Animais , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Schisandra/química , Proteínas de Ligação a Elemento Regulador de Esterol/genética
8.
J Biol Chem ; 289(42): 29365-75, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25187517

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as important regulatory molecules in tumor suppressor and oncogenic pathways. However, the magnitude of the contribution of lncRNA expression to normal human tissues and cancers has not been investigated in a comprehensive manner. Here we explored the biology of the lncRNA MALAT1 and considered the potential significance in mesenchymal stem cells from myeloma patients. By using assays such as RNA interference, luciferase, chromatin immunoprecipitation, and RNA immunoprecipitation, we showed that in mesenchymal stem cells MALAT1 promoted the activation effect of the key transcription factor Sp1 on LTBP3 promoter by modulating recruitment of Sp1 to the LTBP3 gene that regulated the bioavailability of TGF-ß in particular. Our data suggested that lncRNA MALAT1 directly interacted with Sp1 and LTBP3 promoter to increase expression of LTBP3 gene. The specificity and efficiency of activation were ensured by the formation of a stable complex between MALAT1 and the LTBP3 promoter, direct interaction of MALAT1 with Sp1, and recruitment of Sp1 to the promoter. In this study, we showed that the mechanism of transcriptional activation of LTBP3 promoter depended on MALAT1 initiated from neighboring gene LTBP3 and involved both the direct interaction of the Sp1 and promoter-specific activation. Our knowledge of the role of MALAT1 in cellular transformation is pointing toward its potential use as a biomarker and a target for novel therapeutic approaches in multiple myeloma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a TGF-beta Latente/genética , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/genética , RNA Longo não Codificante/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Proteínas de Ligação a TGF-beta Latente/metabolismo , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Fator de Transcrição Sp1/metabolismo
9.
J Med Food ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315928

RESUMO

Schisandra chinensis (Turcz) Baill (S. chinensis) is the key traditional Chinese medicine for the treatment of asthma used by ancient and modern medical practitioners. However, the material basis and the main mechanism of its antiasthmatic effect remain unclear. Our preliminary results showed that schisandrol A (SCA), a representative monomer of Schisandra lignans, had the best relaxation effect on tracheal rings in isolated rats. In this research, a mouse asthma model was prepared by combining ovalbumin (OVA) with Al (OH)3 for exploring the antiasthmatic action and the underlying mechanism of SCA. The study results demonstrated that SCA improved the behavior of mice with asthma and pathological changes in their lung tissues and airways, decreased serum immunoglobulin E (IgE) and OVA-IgE levels, interleukin-4 (IL-4), IL-5, IL-13, and eotaxin contents, and leukocytes number in bronchoalveolar lavage fluid. SCA downregulated the gene expressions of keratinocyte-derived protein chemokines and ILs and reduced the expressions of phosphorylated IκB kinase α (p-IKKα) and p-nuclear factor kappa-B (NF-κB) proteins in lung tissues. In addition, it was found that SCA could significantly increase T-superoxide dismutase and catalase activities, decrease malondialdehyde content, and elevate p-IκBα, NF-E2-related-factor 2 (Nrf2), and heme oxygenase-1 (HO-1) protein expressions. In summary, SCA treatment resulted in a significant improvement in the allergic bronchial asthma in mice, and its mechanisms may involve the regulation of the NF-κB/IκBα pathway to reduce inflammatory response and the Nrf2/HO-1 pathway to improve the body's antioxidant capacity. These results suggest that SCA is a key component of S. chinensis in exerting antiasthmatic effects.

10.
Sci Rep ; 13(1): 13475, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596361

RESUMO

Pulmonary fibrosis (PF) is a serious progressive fibrotic disease that is characterized by excessive accumulation of extracellular matrix (ECM), thus resulting in stiff lung tissues. Lysyl oxidase (LOX) is an enzyme involved in fibrosis by catalyzing collagen cross-linking. Studies found that the ingredients in schisandra ameliorated bleomycin (BLM)-induced PF, but it is unknown whether the anti-PF of schisandra is related to LOX. In this study, we established models of PF including a mouse model stimulated by BLM and a HFL1 cell model induced by transforming growth factor (TGF)-ß1 to evaluate the inhibition effects of Schisandrin C (Sch C) on PF. We observed that Sch C treatment decreased pulmonary indexes compared to control group. Treatment of Sch C showed a significant reduction in the accumulation of ECM as evidenced by decreased expressions of α-SMA, FN, MMP2, MMP9, TIMP1 and collagen proteins such as Col 1A1, and Col 3A1. In addition, the expression of LOX in the lung tissue of mice after Sch C treatment was effectively decreased compared with the MOD group. The inhibition effects in vitro were consistent with those in vivo. Mechanistic studies revealed that Sch C significantly inhibited TGF-ß1/Smad2/3 and TNF-α/JNK signaling pathways. In conclusion, our data demonstrated that Sch C significantly ameliorated PF in vivo and vitro, which may play an important role by reducing ECM deposition and inhibiting the production of LOX.


Assuntos
Lignanas , Compostos Policíclicos , Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/tratamento farmacológico , Colágeno , Lignanas/farmacologia , Lignanas/uso terapêutico , Compostos Policíclicos/farmacologia , Compostos Policíclicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA