Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894482

RESUMO

We have prepared NiMnGa glass-coated microwires with different geometrical aspect ratios, ρ = dmetal/Dtotal (dmetal-diameter of metallic nucleus, and Dtotal-total diameter). The structure and magnetic properties are investigated in a wide range of temperatures and magnetic fields. The XRD analysis illustrates stable microstructure in the range of ρ from 0.25 to 0.60. The estimations of average grain size and crystalline phase content evidence a remarkable variation as the ρ-ratio sweeps from 0.25 to 0.60. Thus, the microwires with the lowest aspect ratio, i.e., ρ = 0.25, show the smallest average grain size and the highest crystalline phase content. This change in the microstructural properties correlates with dramatic changes in the magnetic properties. Hence, the sample with the lowest ρ-ratio exhibits an extremely high value of the coercivity, Hc, compared to the value for the sample with the largest ρ-ratio (2989 Oe and 10 Oe, respectively, i.e., almost 300 times higher). In addition, a similar trend is observed for the spontaneous exchange bias phenomena, with an exchange bias field, Hex, of 120 Oe for the sample with ρ = 0.25 compared to a Hex = 12.5 Oe for the sample with ρ = 0.60. However, the thermomagnetic curves (field-cooled-FC and field-heating-FH) show similar magnetic behavior for all the samples. Meanwhile, FC and FH curves measured at low magnetic fields show negative values for ρ = 0.25, whereas positive values are found for the other samples. The obtained results illustrate the substantial effect of the internal stresses on microstructure and magnetic properties, which leads to magnetic hardening of samples with low aspect ratio.

2.
Sensors (Basel) ; 24(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39409279

RESUMO

A preprocessing technique named "spiral annealing" was applied for the first time to magnetic microwires. In this process, the sample was arranged in a flat spiral shape during annealing, and subsequent measurements were conducted on the unbent sample with the induced stress distribution along and transverse to the sample. The research utilized both magnetic and magneto-optical methods. The anisotropy field magnitude in both the volume and surface of the microwire was measured, and for the first time, a direct correlation between the anisotropy field and the curvature of a spirally annealed microwire was established. Additionally, a connection between the type of surface domain structure and the degree of spiral curvature was identified. The preservation of the distribution of spiral annealing-induced magnetic properties both along and across the microwire is a key effect influencing the technological application of the microwire. The range of induced curvature within which a specific helical magnetic structure can exist was also determined. This insight links the conditions of spiral annealing to the selection of microwires as active elements in magnetic sensors.

3.
Sensors (Basel) ; 24(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38400484

RESUMO

An approach was proposed to control the displacement of domain walls in magnetic microwires, which are employed in magnetic sensors. The velocity of the domain wall can be altered by the interaction of two magnetic microwires of distinct types. Thorough investigations were conducted utilizing fluxmetric, Sixtus-Tonks, and magneto-optical techniques. The magneto-optical examinations revealed transformation in the surface structure of the domain wall and facilitated the determination of the mechanism of external influence on the movement of domain walls in magnetic microwires.

4.
Sensors (Basel) ; 23(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299836

RESUMO

In the current study we have obtained Co2FeSi glass-coated microwires with different geometrical aspect ratios, ρ = d/Dtot (diameter of metallic nucleus, d and total diameter, Dtot). The structure and magnetic properties are investigated at a wide range of temperatures. XRD analysis illustrates a notable change in the microstructure by increasing the aspect ratio of Co2FeSi-glass-coated microwires. The amorphous structure is detected for the sample with the lowest aspect ratio (ρ = 0.23), whereas a growth of crystalline structure is observed in the other samples (aspect ratio ρ = 0.30 and 0.43). This change in the microstructure properties correlates with dramatic changing in magnetic properties. For the sample with the lowest ρ-ratio, non-perfect square loops are obtained with low normalized remanent magnetization. A notable enhancement in the squareness and coercivity are obtained by increasing ρ-ratio. Changing the internal stresses strongly affects the microstructure, resulting in a complex magnetic reversal process. The thermomagnetic curves show large irreversibility for the Co2FeSi with low ρ-ratio. Meanwhile, if we increase the ρ-ratio, the sample shows perfect ferromagnetic behavior without irreversibility. The current result illustrates the ability to control the microstructure and magnetic properties of Co2FeSi glass-coated microwires by changing only their geometric properties without performing any additional heat treatment. The modification of geometric parameters of Co2FeSi glass-coated microwires allows to obtain microwires that exhibit an unusual magnetization behavior that offers opportunities to understand the phenomena of various types of magnetic domain structures, which is essentially helpful for designing sensing devices based on thermal magnetization switching.


Assuntos
Núcleo Celular , Imãs , Fenômenos Físicos , Vidro , Fenômenos Magnéticos
5.
Sensors (Basel) ; 23(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36991797

RESUMO

We studied the magnetic properties of a glass-covered amorphous microwire that was stress-annealed at temperatures distributed along the microwire length. The Sixtus-Tonks, Kerr effect microscopy and magnetic impedance techniques have been applied. There was a transformation of the magnetic structure across the zones subjected to annealing at different temperatures. The annealing temperature distribution induces the graded magnetic anisotropy in the studied sample. The variety of the surface domain structures depending on the longitudinal location has been discovered. Spiral, circular, curved, elliptic and longitudinal domain structures coexist and replace each other in the process of magnetization reversal. The analysis of the obtained results was carried out based on the calculations of the magnetic structure, assuming the distribution of internal stresses.

6.
Sensors (Basel) ; 23(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836897

RESUMO

In this article, we study the effect of annealing temperature and applied stress on the magnetic properties of Fe71.80B13.27Si11.02Nb2.99Ni0.92 and Co65.34Si12.00B10.20Cr8.48Fe3.90Mo0.08 microwires. An anomalous behavior of the coercive field is observed while applying stress, indicating nontrivial changes in the microwire magnetic anisotropy. The effect of applied stimuli on the magnetic anisotropy and magnetostriction constant in both microwires is also discussed.

7.
Sensors (Basel) ; 23(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687937

RESUMO

As-prepared Fe-rich microwires with perfectly rectangular hysteresis loops present magnetization reversal through fast domain wall propagation, while the giant magnetoimpedance (GMI) effect in Fe-rich microwires is rather low. However, the lower cost of Fe-rich microwires makes them attractive for magnetic sensors applications. We studied the effect of conventional (furnace) annealing and Joule heating on magnetic-propertied domain wall (DW) dynamics and the GMI effect in two Fe microwires with different geometries. We observed that magnetic softness, GMI effect and domain wall (DW) dynamics can be substantially improved by appropriate annealing. Observed experimental results are discussed considering the counterbalance between the internal stresses relaxation and induced magnetic anisotropy associated with the presence of an Oersted magnetic field during Joule heating.

8.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161798

RESUMO

The influence of Joule heating on magnetic properties, giant magnetoimpedance (GMI) effect and domain wall (DW) dynamics of Fe75B9Si12C4 glass-coated microwires was studied. A remarkable (up to an order of magnitude) increase in GMI ratio is observed in Joule heated samples in the frequency range from 10 MHz to 1 GHz. In particular, an increase in GMI ratio, from 10% up to 140% at 200 MHz is observed in Joule heated samples. Hysteresis loops of annealed samples maintain a rectangular shape, while a slight decrease in coercivity from 93 A/m to 77 A/m, after treatment, is observed. On the other hand, a modification of MOKE hysteresis loops is observed upon Joule heating. Additionally, an improvement in DW dynamics after Joule heating is documented, achieving DW propagation velocities of up to 700 m/s. GMI ratio improvement along with the change in MOKE loops and DW dynamics improvement have been discussed considering magnetic anisotropy induced by Oersted magnetic fields in the surface layer during Joule heating and internal stress relaxation. A substantial GMI ratio improvement observed in Fe-rich Joule-heated microwires with a rectangular hysteresis loop and fast DW propagation, together with the fact that Fe is a more common and less expensive metal than Co, make them suitable for use in magnetic sensors.

9.
Sensors (Basel) ; 22(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009727

RESUMO

In this paper, a gradual change in the hysteresis loop of Co-rich glass-coated microwire stress-annealed at variable temperature is observed. Such microwires annealed with a temperature gradient also present a variable squareness ratio and magnetic anisotropy field along the microwire's length. The obtained graded anisotropy has been attributed to a gradual modification of the domain structure along the microwire originated by a counterbalance between shape, magnetoelastic, and induced magnetic anisotropies. Accordingly, we propose a rather simple route to design graded magnetic anisotropy in a magnetic microwire.

10.
Sensors (Basel) ; 20(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339238

RESUMO

There is a pressing demand to improve the performance of cost-effective soft magnetic materials for use in high performance sensors and devices. Giant Magneto-impedance effect (GMI), or fast single domain wall (DW) propagation can be observed in properly processed magnetic microwires. In this paper we have identified the routes to obtain microwires with unique combination of magnetic properties allowing observation of fast and single DW propagation and GMI effect in the same microwire. By modifying the annealing conditions, we have found the appropriate regimes allowing achievement of the highest GMI ratio and the fastest DW dynamics. The observed experimental results are discussed considering the radial distribution of magnetic anisotropy and the correlation of GMI effect, and DW dynamics with bulk and surface magnetization processes. Studies of both Fe- and Co-rich microwires, using the magneto-optical Kerr effect, MOKE, provide information on the magnetic structure in the outer shell of microwires. We have demonstrated the existence of the spiral helical structure in both studied microwires. At the same time, torsion mechanical stresses induce helical bistability in the same microwires, which allow us to consider these microwires as materials suitable for sensors based on the large Barkhausen jump.

11.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517142

RESUMO

Amorphous soft magnetic microwires have attracted much attention in the area of sensor applications due to their excellent properties. In this work, we study the influence of annealing treatments (stress and conventional) in the giant magnetoimpedance (GMI) response and the field sensitivity of the soft magnetic Co69.2Fe3.6Ni1B12.5Si11Mo1.5C1.2 glass-coated microwires. Here we report a remarkable and simultaneous enhancement of GMI effect and field sensitivity. The highest sensitivity of 104%/Oe and the GMI response of 234% were achieved for 300 °C stress-annealed samples at 472 and 236 MPa, respectively. Additionally, we found that stress-annealed microwires exhibit a frequency dependence on maximal GMI response and field sensitivity. These findings are obtained by fine-tuning their magnetoeslastic anisotropies through stress-annealing treatments of as-prepared microwires at the proper temperature and axial applied stress upon annealing. We hope that the results presented here widen the scope of investigations for the future design of soft magnetic materials for sensor purposes.

12.
Sensors (Basel) ; 20(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168845

RESUMO

Magnetic microwires can present excellent soft magnetic properties and a giant magnetoimpedance effect. In this paper, we present our last results on the effect of postprocessing allowing optimization of the magnetoimpedance effect in Co-rich microwires suitable for magnetic microsensor applications. Giant magnetoimpedance effect improvement was achieved either by annealing or stress-annealing. Annealed Co-rich presents rectangular hysteresis loops. However, an improvement in magnetoimpedance ratio is observed at fairly high annealing temperatures over a wide frequency range. Application of stress during annealing at moderate values of annealing temperatures and stress allows for a remarkable decrease in coercivity and increase in squareness ratio and further giant magnetoimpedance effect improvement. Stress-annealing, carried out at sufficiently high temperatures and/or stress allowed induction of transverse magnetic anisotropy, as well as magnetoimpedance effect improvement. Enhanced magnetoimpedance ratio values for annealed and stress-annealed samples and frequency dependence of the magnetoimpedance are discussed in terms of the radial distribution of the magnetic anisotropy. Accordingly, we demonstrated that the giant magnetoimpedance effect of Co-rich microwires can be tailored by controlling the magnetic anisotropy of Co-rich microwires, using appropriate thermal treatment.

13.
Sensors (Basel) ; 19(21)2019 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-31684037

RESUMO

Thin magnetic wires can present excellent soft magnetic properties (with coercivities up to 4 A/m), Giant Magneto-impedance effect, GMI, or rectangular hysteresis loops combined with quite fast domain wall, DW, propagation. In this paper we overview the magnetic properties of thin magnetic wires and post-processing allowing optimization of their magnetic properties for magnetic sensor applications. We concluded that the GMI effect, magnetic softness or DW dynamics of microwires can be tailored by controlling the magnetoelastic anisotropy of as-prepared microwires or controlling their internal stresses and domain structure by appropriate thermal treatment.

14.
Sensors (Basel) ; 19(21)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717817

RESUMO

In this paper, a magnetic microwire-based sensor array embedded under the pavement is proposed as a weighing system at customs ports of entry. This sensor is made of a cementitious material suitable for embedding within the core of concrete structures prior to curing. The objective of this research is to verify the feasibility of stress monitoring for concrete materials using an array of cement-based stress/strain sensors that have been developed using the magnetic sensing property of an embedded microwire in a cement-based composite. Test results for microwire-based sensors and gauge sensors are compared. The strain sensitivity and their linearity are investigated through experimental testing under compressive loadings. Sensors made of these materials can be designed to satisfy specific needs and reduce costs in the production of sensor aggregates with improved coupling performance, thus avoiding any disturbance to the stress state.

15.
Sensors (Basel) ; 19(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766419

RESUMO

Amorphous ferromagnetic materials in the form of microwires are of interest for the development of various sensors. This paper analyzes and argues for the use of microwires of two basic compositions of Co71Fe5B11Si10Cr3 and Fe3.9(4.9)Co64.82B10.2Si12Cr9(8)Mo0.08 as stress/strain and temperature sensors, respectively. The following properties make them suitable for innovative applications: miniature dimensions, small coercivity, low anisotropy and magnetostriction, tunable magnetic structure, magnetic anisotropy, and Curie temperature by annealing. For example, these sensors can be used for testing the internal stress/strain condition of polymer composite materials and controlling the temperature of hypothermia treatments. The sensing operation is based on the two fundamental effects: the generation of higher frequency harmonics of the voltage pulse induced during remagnetization in wires demonstrating magnetic bistability, and magnetoimpedance.

16.
Materials (Basel) ; 17(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38673230

RESUMO

We provide comparative studies of the structural, morphological, microstructural, and magnetic properties of MnFePSi-glass-coated microwires (MnFePSi-GCMWs) and bulk MnFePSi at different temperatures and magnetic fields. The structure of MnFePSi GCMWs prepared by the Taylor-Ulitovsky method consists of the main Fe2P phase and secondary impurities phases of Mn5Si3 and Fe3Si, as confirmed by XRD analysis. Additionally, a notable reduction in the average grain size from 24 µm for the bulk sample to 36 nm for the glass-coated microwire sample is observed. The analysis of magnetic properties of MnFePSi-glass-coated microwires shows different magnetic behavior as compared to the bulk MnFePSi. High coercivity (450 Oe) and remanence (0.32) are observed for MnFePSi-GCMWs compared to low coercivity and remanent magnetization observed for bulk MnFePSi alloy. In addition, large irreversibility at low temperatures is observed in the thermal dependence of magnetization of microwires. Meanwhile, the bulk sample shows regular ferromagnetic behavior, where the field cooling and field heating magnetic curves show a monotonic increase by decreasing the temperature. The notable separation between field cooling and field heating curves of MnFePSi-GCMWs is seen for the applied field at 1 kOe. Also, the M/M5K vs. T for MNFePSi-GCMWs shows a notable sensitivity at a low magnetic field compared to a very noisy magnetic signal for bulk alloy. The common features for both MnFePSi samples are high Curie temperatures above 400 K. From the experimental results, we can deduce the substantial effect of drawing and quenching involved in the preparation of glass-coated MnFePSi microwires in modification of the microstructure and magnetic properties as compared to the same bulk alloy. The provided studies prove the suitability of the Taylor-Ulitovsky method for the preparation of MnFePSi-glass-coated microwires.

17.
Materials (Basel) ; 16(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570037

RESUMO

In the current work, we illustrate the effect of adding a small amount of carbon to very common Co2MnSi Heusler alloy-based glass-coated microwires. A significant change in the magnetic and structure structural properties was observed for the new alloy Co2MnSiC compared to the Co2MnSi alloy. Magneto-structural investigations were performed to clarify the main physical parameters, i.e., structural and magnetic parameters, at a wide range of measuring temperatures. The XRD analysis illustrated the well-defined crystalline structure with average grain size (Dg = 29.16 nm) and a uniform cubic structure with A2 type compared to the mixed L21 and B2 cubic structures for Co2MnSi-based glass-coated microwires. The magnetic behavior was investigated at a temperature range of 5 to 300 K and under an applied external magnetic field (50 Oe to 20 kOe). The thermomagnetic behavior of Co2MnSiC glass-coated microwires shows a perfectly stable behavior for a temperature range from 300 K to 5 K. By studying the field cooling (FC) and field heating (FH) magnetization curves at a wide range of applied external magnetic fields, we detected a critical magnetic field (H = 1 kOe) where FC and FH curves have a stable magnetic behavior for the Co2MnSiC sample; such stability was not found in the Co2MnSi sample. We proposed a phenomenal expression to estimate the magnetization thermal stability, ΔM (%), of FC and FH magnetization curves, and the maximum value was detected at the critical magnetic field where ΔM (%) ≈ 98%. The promising magnetic stability of Co2MnSiC glass-coated microwires with temperature is due to the changing of the microstructure induced by the addition of carbon, as the A2-type structure shows a unique stability in response to variation in the temperature and the external magnetic field. In addition, a unique internal mechanical stress was induced during the fabrication process and played a role in controlling magnetic behavior with the temperature and external magnetic field. The obtained results make Co2MnSiC a promising candidate for magnetic sensing devices based on Heusler glass-coated microwires.

18.
J Nanosci Nanotechnol ; 12(9): 7426-31, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23035488

RESUMO

The magnetic, magnetotransport, and magnetocaloric properties near compound phase transitions in Ni50Mn35In14Z (Z = In, Ge, Al), and Ni48Co2Mn35In15 Heusler alloys have been studied using VSM and SQUID magnetometers (at magnetic fields (H) up to 5 T), four-probe method (at H = 0.005-1.5 T), and an adiabatic magnetocalorimeter (for H changes up to deltaH = 1.8 T), respectively. The martensitic transformation (MT) is accompanied by large magnetoresistance (up to 70%), a significant change in resistivity (up to 200%), and a sign reversal of the ordinary Hall effect coefficient, all related to a strong change in the electronic spectrum at the MT. The field dependences of the Hall resistance are complex in the vicinity of the MT, indicating a change in the relative concentrations of the austenite and martensite phases at strong fields. Negative and positive changes in adiabatic temperatures of about -2 K and +2 K have been observed in the vicinity of MT and Curie temperatures, respectively, for deltaH = 1.8 T.

19.
Nanomaterials (Basel) ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430007

RESUMO

Cu100-xCox thin films have been obtained by sputtering (x = 3, 9) and sputter gas aggregation (x = 2.5, 7.5) and subsequent annealing at 400 °C for 1 h. We have studied their structural, magnetic, and magnetotransport properties, both for the as-deposited and annealed samples, confirming the important role of the fabrication method in the properties. The magnetic measurements and the fitting of the hysteresis loops evidence that as-deposited samples consist of superparamagnetic (SPM) and/or ferromagnetic clusters, but in the samples obtained by gas aggregation the clusters are greater (with ferromagnetic behavior at room temperature) whereas in the samples obtained by sputtering, the clusters are smaller and there are also diluted Co atoms in the Cu matrix. The annealing affects negligibly the samples obtained by gas aggregation, but the ones obtained by sputtering are more affected, appearing greater clusters. This behavior is also reflected in the magnetoresistance (MR) measurements of the samples, with different shapes of the MR curves depending on the preparation method: more lineal in the whole range for sputtering, saturation at low fields (about 10 kOe) for gas aggregation. Finally, a Kondo-like minimum in the resistance versus temperature is found in the samples obtained by sputtering, affected by the magnetic field and the annealing. The observed Kondo-like behavior and the influence of annealing on a Kondo-like minimum in sputtered thin films have been attributed to the presence of diluted Co atoms in the Cu matrix and the Co precipitations from the Co-Cu solid solution upon annealing respectively.

20.
Nanomaterials (Basel) ; 10(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722231

RESUMO

We provide an overview of the tools directed to reversible and irreversible transformations of the magnetic structure of glass-covered microwires. The irreversible tools are the selection of the chemical composition, geometric ratio, and the stress-annealing. For reversible tuning we use the combination of magnetic fields and mechanical stresses. The studies were focused on the giant magnetoimpedance effect and the velocity of the domain walls propagation important for the technological applications. The essential increase of the giant magnetoimpedance effect and the control of the domain wall velocity were achieved as a result of the use of two types of control tools. The performed simulations reflect the real transformation of the helical domain structures experimentally found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA