Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 62(11): 2766-2775, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133117

RESUMO

To suppress the mid-high-frequency error of small optical tungsten carbide aspheric molds, it is proposed to quickly select the critical process parameters by simulating the residual error after convolution of the tool influence function (TIF). After polishing for 10.47 min by the TIF, two simulation optimizations, RMS and Ra, converge to 9.3 and 5.347 nm, respectively. Their convergence rates are improved by 40% and 7.9%, respectively, compared to ordinary TIF. Then, a faster and more high-quality multi-tool combination smoothing suppression method is proposed, and the corresponding polishing tools are designed. Finally, the global Ra of the aspheric surface converges from 5.9 to 4.5 nm after smoothing for 5.5 min with a disc-shaped polishing tool with a fine microstructure and maintains an excellent low-frequency error (PV 0.0781 µm).

2.
Materials (Basel) ; 15(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35888315

RESUMO

For small aspherical molds, it is difficult for the existing polishing method to take into account the correction of the surface error and the control of the uniformity of the surface roughness (SR) distribution, because the polishing tool is always larger than the small mold. Therefore, we used viscoelastic polyester fiber cloth to wrap the small steel ball as a polishing tool to adapt to the surface shape change of the aspherical mold, and designed a semi-flexible small polishing disc tool with microstructure, which can better adapt to the curvature change of aspherical surface and obtain better SR Ra. At the same time, a combined polishing method of constant speed and variable speed for screw feed was proposed to improve the uniformity of SR distribution in the paper. Then, a series of theoretical analysis and experimental verification were carried out in this paper to predict the tool influence function (TIF) of the two polishing tools and the effectiveness of the combined polishing method. In the experiment, a TIF bandwidth of about 0.46 mm was obtained with a small spherical polishing tool, which favors the surface shape correction of the small aspherical mold. The experiment of uniform removal with a small polishing disc tool was carried out to quickly reduce the Ra. Finally, the surface quality of the aspherical mold was effectively improved, combined with the constant speed and variable speed polishing modes of screw feed of the small spherical polishing tool and the smoothing effect of the small polishing disc tool. The peak valley (PV) of two small aspherical molds with an optical effective diameter less than 13 mm converged from 0.3572 µm and 0.2075 µm to 0.1282 µm and 0.071 µm, respectively. At the same time, the SR dispersion coefficient was reduced from 27.9% and 41.6% to 14.2% and 12.7%, respectively. The study provides a good solution for the surface quality control of small aspherical molds.

3.
Materials (Basel) ; 12(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752215

RESUMO

Precision glass molding is a revolutionary technology for achieving high precision and efficient manufacturing of glass aspheric lenses. The material properties of glass, including elastic modulus and viscosity, are highly dependent on temperature fluctuations. This paper aims to investigate the effect of elastic modulus on the high-temperature viscoelasticity of glass and the accuracy of the finite element simulation of the molding process for glass aspheric lenses. The high-temperature elastic modulus of D-ZK3L glass is experimentally measured and combined with the glass cylinder compression creep curve to calculate the high temperature viscoelasticity of D-ZK3L. Three groups of viscoelastic parameters are obtained. Based on this, the molding process of the molded aspheric lens is simulated by the nonlinear finite element method (FEM). The surface curves of lenses obtained by simulation and theoretical analyses are consistent. The simulation results obtained at different initial elastic modulus values indicate that the elastic modulus has a great influence on the precision of the FEM-based molding process of glass aspheric lenses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA