Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Waste Manag Res ; 37(10): 1043-1057, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31395003

RESUMO

Thermal composting is an important and useful way to transfer raw organic matter into value-added product rich in humic substances. Furthermore, thermal composting is a very promising way to reduce deinking paper sludge pollutions, which are difficult to remove. The objective of this study was to investigate the behaviour of the composting process of deinking paper sludge with poultry manure over 14 months. Two composts were used: C1 (70/30: deinking paper sludge/poultry manure) and C2 (50/50: deinking paper sludge/poultry manure). The compost stability and maturity were assessed via physico-chemical and thermal analyses: thermogravimetric analysis, differential thermal analysis and diffuse reflectance infrared Fourier transform spectroscopy. Diffuse reflectance infrared Fourier transform spectroscopy analysis provided chemical information for the presence of aromatic, phenolic, aliphatic and polysaccharidic structures. Thermogravimetry analyses revealed that both deinking paper sludge composts were rich in humic acids. The ratio E4/E6 (fulvic acids/humic acids) was also carried out to characterise the maturity index of composts. After 14 months, the compost C2 is more stable, mature and rich in humic acids than compost C1. Furthermore, the addition of poultry manure to the deinking paper sludge-based composts enhanced the formation of humic substances. From 0 to 14 months of composting, the concentration of polychlorinated biphenyls decreased from 0.2 to 0.1 mg kg-1 and from 0.6 to 0.2 mg kg-1 for C1 and C2, respectively.


Assuntos
Compostagem , Animais , Substâncias Húmicas , Esterco , Esgotos , Solo , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Can J Microbiol ; 61(5): 315-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25776569

RESUMO

Determining how soil microorganisms respond to crop management systems during winter could further our understanding of soil phosphorus (P) transformations. This study assessed the effects of tillage (moldboard plowing or no-till) and P fertilization (0, 17.5, or 35 kg P·ha(-1)) on soil microbial biomass, enzymatic activity, and microbial community structure in winter, in a long-term (18 years) corn (Zea mays L.) and soybean (Glycine max L.) rotation established in 1992 in the province of Quebec, Canada. Soil samples were collected at 2 depths (0-10 and 10-20 cm) in February 2010 and 2011 after the soybean and the corn growing seasons, respectively. Winter conditions increased the amounts of soil microbial biomasses but reduced the overall enzymatic activity of the soil, as compared with fall levels after corn. P fertilization had a quadratic effect on the amounts of total, bacterial, arbuscular mycorrhizal fungi phospholipid fatty acid markers after corn but not after soybean. The soil microbial community following the soybean and the corn crops in winter had a different structure. These findings suggest that winter conditions and crop-year could be important factors affecting the characteristics of the soil microbial community under different tillage and mineral P fertilization.


Assuntos
Agricultura , Fósforo/farmacologia , Microbiologia do Solo , Biomassa , Canadá , Fertilizantes , Estações do Ano , Solo/química , Glycine max , Zea mays
3.
J Environ Qual ; 43(2): 517-27, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25602653

RESUMO

The application of industrial residuals in agriculture may raise concerns about soil and crop metal accumulation. A complete study using a fractionation scheme would reveal build-up in metal pools occurring after material addition and predict the transformation of metals in soil between the different forms and potential metal release into the environment. An experimental study was conducted from 2000 to 2008 on a loamy soil at Yamachiche, Quebec, Canada, to evaluate the effects of repeated annual addition of combined paper mill biosolids when applied alone or with several liming by-products on soil Cu, Zn, and Cd fractions. Wet paper mill biosolids at 0, 30, 60, or 90 Mg ha and calcitic lime, lime mud, or wood ash, each at 3 Mg ha with 30 Mg paper mill biosolids ha, were surface applied after seeding. The soils were sampled after 6 (soybean [ (L.) Merr.]) and 9 [corn ( L.)] crop years and analyzed using the Tessier fractionation procedure. Results indicated that biosolids addition increased exchangeable Zn and Cd, carbonate-bound Cd, Fe-Mn oxide-bound Zn and Cd, organically bound Cu and Zn, and total Zn and Cd fractions but decreased Fe-Mn oxide-bound Cu in the uppermost 30-cm layer. With liming by-products, there was a shift from exchangeable to carbonate-bound forms. Even with very small metals addition, paper mill and liming materials increased the mobility of soil Zn and Cd after 9 yr of application, and this metal redistribution resulted into higher crop grain concentrations.

4.
J Environ Qual ; 43(4): 1431-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25603090

RESUMO

Conservation tillage practices have become increasingly common in recent years to reduce soil erosion, improve water conservation, and increase soil organic matter. Research suggests that conservation tillage can stratify soil test phosphorus (P), but little is known about the effects on soil organic P. This study was conducted to assess the long-term effects of tillage practices (no-till [NT] and mouldboard plowing) and P fertilization (0 and 35 kg P ha) on the distribution of P species in the soil profile. Soil samples from a long-term corn-soybean rotation experiment in Québec, Canada, were collected from three depths (0-5, 5-10, and 10-20 cm). These samples were analyzed for total P (TP), total C (TC), total N (TN), pH, and Mehlich-3 P (PM3); P forms were characterized with solution phosphorus-31 nuclear magnetic resonance spectroscopy (P-NMR). Results showed a stratification of TP, TC, TN, pH, PM3, and Mehlich-3-extractable aluminum and magnesium under NT management. The PM3 and orthophosphate concentrations were greater at the soil surface (0-5 cm) of the NT-P (soil treatment with 35 kg P ha) treatment. Organic P forms (orthophosphate monoesters, especially -IP, and nucleotides) had accumulated in the deep layer of NT treatment possibly due to preferential movement. We found evidence that the NT system and P fertilization changed the distribution of P forms along the soil profile, potentially increasing soluble inorganic P loss in surface runoff and organic P in drainage and decreasing bioavailability of inorganic and organic P in deeper soil layers.

5.
J Environ Qual ; 43(3): 829-41, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25602812

RESUMO

Urine and dung deposited by grazing dairy cows are a major source of nitrous oxide (NO), a potent greenhouse gas that contributes to stratospheric ozone depletion. In this study, we quantified the emissions of NO after deposition of dairy cow excreta onto two grassland sites with contrasting soil types in eastern Canada. Our objectives were to determine the impact of excreta type, urine-N rate, time of the year, and soil type on annual NO emissions. Emissions were monitored on sandy loam and clay soils after spring, summer, and fall urine (5 and 10 g N patch) and dung (1.75 kg fresh weight dung) applications to perennial grasses in two successive years. The mean NO emission factor (EF) for urine was 1.09% of applied N in the clay soil and 0.31% in the sandy loam soil, estimates much smaller than the default Intergovernmental Panel on Climate Change (IPCC) default value for total excreta N (2%). Despite variations in urine composition and in climatic conditions, these soil-specific EFs were similar for the two urine-N application rates. The time of the year when urine was applied had no impact on emissions from the sandy loam soil, but greater EFs were observed after summer (1.59%) than spring (1.14%) and fall (0.55%) applications in the clay soil. Dung deposition impact on NO emission was smaller than that of urine, with a mean EF of 0.15% in the sandy loam soil and 0.08% in the clay soil. Our results suggest (i) that the IPCC default EF overestimates NO emissions from grazing cattle excreta in eastern Canada by a factor of 4.3 and (ii) that a region-specific inventory methodology should account for soil type and should use specific EFs for urine and dung.

6.
J Environ Qual ; 42(2): 412-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673833

RESUMO

Land application of residuals from the forest industry can help to restore soil fertility, but few studies have assessed the effects of metal accumulation in plants. An experimental study was initiated in 2000 on a loamy soil at Yamachiche, QC, Canada, to evaluate the effects of repeated annual applications of combined paper mill biosolids, when applied alone or with several liming by-products. This study assessed the accumulation of Cu, Zn, Mo, and Cd in plants and soil after 6 (soybean [ (L.) Merr.]) and 9 [corn ( L.)] crop yr. Wet paper mill biosolids at 0, 30, 60, or 90 Mg ha were surface applied after seeding. Calcitic lime, lime mud, and wood ash were applied wet each at 3 Mg ha with 30 Mg wet paper mill biosolids ha. Repeated applications of paper mill biosolids increased plant and soil metal concentrations after 6 and 9 yr in the order of Cd > Mo (soybean) > Zn > Cu. Liming increased soil pH and Mo availability and decreased Zn and Cd availability. Metals in crop stover responded more positively to applications than those in grains, but the concentrations in plant tissues were generally well below critical values. The Cu/Mo ratio of soybean plants at pH > 6.8 fell below 2:1, however, and may pose a risk for inducing Cu metabolism disorder in ruminants. Results of this study indicate that paper mill biosolids and alkaline residuals, when applied with respect to regulations and soil pH, have a limited effect on metal accumulation in plants and soil.


Assuntos
Poluentes do Solo , Solo , Metais , Metais Pesados , Esgotos , Glycine max , Zea mays
7.
J Environ Qual ; 42(1): 30-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673736

RESUMO

Wastes from animal production and from the paper industry are often used as amendments to agricultural soils. Although data exist on the impacts of raw animal wastes on NO production, little is known regarding the effects of paper wastes and biosolids from treated animal waste. We measured NO emissions for two consecutive snow-free seasons (mid-May through the end of October) from poorly drained clayey soils under corn ( L.). Soils were amended with raw pig slurry (PS) or biosolids (four PS-derived and two paper sludges) and compared with soils with mineral N fertilizer (CaNHNO) or without N addition (Control). Area-based NO emissions from the mineral N fertilizer (average, 8.2 kg NO-N ha; 4.2% of applied N) were higher ( < 0.001) than emissions from the organic amendments, which ranged from 1.5 to 6.1 kg NO-N ha (-0.4 to 2.5% of applied N). The NO emissions were positively correlated with mean soil NO availability (calculated as "NO exposure"), which was highest with mineral N fertilizer. In plots treated with organic amendments (i.e., biosolids and raw PS), NO exposure was negatively correlated to the C:N ratio of the amendment. This resulted in lower NO emissions from the higher C:N ratio biosolids, especially compared with the low C:N ratio PS. Application of paper sludge or PS-derived biosolids to these fine-textured soils, therefore, reduced NO emissions compared with raw PS and/or mineral N fertilizers ( < 0.01).


Assuntos
Óxido Nitroso , Solo , Agricultura , Animais , Fertilizantes , Esgotos , Suínos
8.
Sci Total Environ ; 845: 157200, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810887

RESUMO

Animal manure can be a serious environmental concern if improperly managed, particularly with regard to phosphorus (P). A good understanding on manure P chemistry is required for improving manure management in an environmentally sustainable manner. In the study, 102 representative manure samples collected from farms of major intensive livestock areas of Canada were sequentially fractionated with H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1.0 M HCl, respectively, for measuring inorganic (Pi) and organic P (Po). Across the manures, total P (TP) ranged from 3.71 to 17.3 g kg-1, with total Pi and available P (i.e., the sum of H2O-Pi and NaHCO3-Pi) accounting for 67.0-92.4 % and 35.6-67.3 % of TP, respectively. Composting reduced the percentages of available P and Po in TP, and meanwhile increased the percentages of moderately stable HCl-Pi. Compared to other P fractions, manure available P increased more rapidly with increases in TP; once manure TP reached 7.8-9.6 g kg-1, further TP increase enhanced transformation to more recalcitrant P (i.e., NaOH-Pi and HCl-Pi). Under Canadian conditions, manure application to meet the demand of crops for N would lead to P buildup in the soil at rates of 6.1-41.6 kg P ha-1 yr-1, increasing runoff P loss risk. Manure compost and poultry manure tend to cause rapid P buildup in the soil after land application and become a long-term P source for runoff losses. The results help to develop scientifically-sound manure-specific P management technologies which would enable farmers to achieve sustainable crop production with improved environment.


Assuntos
Esterco , Fósforo , Animais , Canadá , Fósforo/análise , Hidróxido de Sódio , Solo
9.
PLoS One ; 16(5): e0250575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970921

RESUMO

Wisconsin and Quebec are the world leading cranberry-producing regions. Cranberries are grown in acidic, naturally low-fertility sandy beds. Cranberry fertilization is guided by general soil and tissue nutrient tests in addition to yield target and vegetative biomass. However, other factors such as cultivar, location, and carbon and nutrient storage impact cranberry nutrition and yield. The objective of this study was to customize nutrient diagnosis and fertilizer recommendation at local scale and for next-year cranberry production after accounting for local factors and carbon and nutrient carryover effects. We collected 1768 observations from on-farm surveys and fertilizer trials in Quebec and Wisconsin to elaborate a machine learning model using minimum datasets. We tested carryover effects in a 5-year Quebec fertilizer experiment established on permanent plots. Micronutrients contributed more than macronutrients to variation in tissue compositions. Random Forest model related accurately current-year berry yield to location, cultivars, climatic indices, fertilization, and tissue and soil tests as features (classification accuracy of 0.83). Comparing compositions of defective and successful tissue compositions in the Euclidean space of tissue compositions, the general across-factor diagnosis differed from the local factor-specific diagnosis. Nutrient standards elaborated in one region could hardly be transposed to another and, within the same region, from one bed to another due to site-specific characteristics. Next-year yield and nutrient adjustment could be predicted accurately from current-year yield and tissue composition and other features, with R2 value of 0.73 in regression mode and classification accuracy of 0.85. Compositional and machine learning methods proved to be effective to customize nutrient diagnosis and predict site-specific measures for nutrient management of cranberry stands. This study emphasized the need to acquire large experimental and observational datasets to capture the numerous factor combinations impacting current and next-year cranberry yields at local scale.


Assuntos
Biomassa , Carbono/química , Fertilizantes/análise , Micronutrientes/análise , Nutrientes/análise , Solo/química , Vaccinium macrocarpon/crescimento & desenvolvimento , Agricultura , Canadá , Fazendas , Nitrogênio/química , Quebeque , Estados Unidos , Wisconsin
10.
Foods ; 10(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802384

RESUMO

For centuries, some Indigenous Peoples of the Americas have planted corn, beans and squash or pumpkins together in mounds, in an intercropping complex known as the Three Sisters. Agriculturally, nutritionally and culturally, these three crops are complementary. This literature review aims to compile historical foods prepared from the products of the Three Sisters planting system used in Indigenous communities in the region encompassing southern Quebec and Ontario in Canada, and northeastern USA. The review does not discuss cultural aspects of the Three Sisters cropping system or describe foods specific to any one Indigenous group, but rather, gives an overview of the historical foods stemming from this intercropping system, many foods of which are common or similar from one group to another. Some of the methods of food preparation used have continued over generations, some of the historical foods prepared are the foundation for foods we eat today, and some of both the methods and foods are finding revival.

11.
Sci Rep ; 10(1): 8959, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488002

RESUMO

Forestland soils play vital role in regulating global soil greenhouse gas (GHG) budgets, but the interactive effect of the litter layer management and simulated nitrogen (N) deposition on these GHG flux has not been elucidated clearly in subtropical forestland. A field trial was conducted to study these effects by using litter removal method under 0 and 40 kg N ha-1 yr-1 addition in a subtropical forestland in Yingtan, Jiangxi Province, China. Soil CO2 emission was increased by N addition (18-24%) but decreased by litter removal (24-32%). Litter removal significantly (P < 0.05) decreased cumulative N2O emission by 21% in treatments without N addition but only by 10% in treatments with 40 kg N ha-1 yr-1 addition. Moreover, litter-induced N2O emission under elevated N deposition (0.094 kg N2O-N ha-1) was almost the same as without N addition (0.088 kg N2O-N ha-1). Diffusion of atmospheric CH4 into soil was facilitated by litter removal, which increased CH4 uptake by 55%. Given that the increasing trend of atmospheric N deposition in future, which would reduce litterfall in subtropical N-rich forest, the effect of surface litter layer change on soil GHG emissions should be considered in assessing forest GHG budgets and future climate scenario modeling.

12.
Plants (Basel) ; 9(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096712

RESUMO

Agroecosystem conditions limit the productivity of lowbush blueberry. Our objectives were to investigate the effects on berry yield of agroecosystem and crop management variables, then to develop a recommendation system to adjust nutrient and soil management of lowbush blueberry to given local meteorological conditions. We collected 1504 observations from N-P-K fertilizer trials conducted in Quebec, Canada. The data set, that comprised soil, tissue, and meteorological data, was processed by Bayesian mixed models, machine learning, compositional data analysis, and Markov chains. Our investigative statistical models showed that meteorological indices had the greatest impact on yield. High mean temperature at flower bud opening and after fruit maturation, and total precipitation at flowering stage showed positive effects. Low mean temperature and low total precipitation before bud opening, at flowering, and by fruit maturity, as well as number of freezing days (<-5 °C) before flower bud opening, showed negative effects. Soil and tissue tests, and N-P-K fertilization showed smaller effects. Gaussian processes predicted yields from historical weather data, soil test, fertilizer dosage, and tissue test with a root-mean-square-error of 1447 kg ha-1. An in-house Markov chain algorithm optimized yields modelled by Gaussian processes from tissue test, soil test, and fertilizer dosage as conditioned to specified historical meteorological features, potentially increasing yield by a median factor of 1.5. Machine learning, compositional data analysis, and Markov chains allowed customizing nutrient management of lowbush blueberry at local scale.

13.
J Environ Qual ; 36(2): 557-67, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17332260

RESUMO

Swine manure contains considerable amounts of total (P) and soluble phosphorus (PO(4)-P) which may increase the soil P content when applied in excess to crop requirements and, consequently, risk water eutrophication. The feasibility of using magnesium (Mg) from the by-product of electrolysis and foundries (BPEF) for the removal of P from liquid swine manure was studied by adding up to 3 g of Mg as BPEF per liter of nursery (NU) and grower-finisher (GF) swine manure in 25-L plastic buckets. Changes in P and other elements were monitored for up to 360 h. Small amounts of Mg as BPEF (0.5 and 1.0 g Mg L(-1) manure) reduced the total P concentration of the liquid fraction by 70 to 95% of both manure types with respect to the control treatment of mixed raw manure. A settling period of 8 h or more was necessary to significantly reduce the liquid fraction's total P concentration for both manure types. Reduction of PO(4)-P varied from 96 to 100% in the liquid fractions for both manure types, which along with natural settling, explains most of the total P reduction in that fraction. The addition of BPEF did not influence the N content of manure. The low P liquid fraction can be safely applied to saturated P soils whereas the high P solid fraction offers the opportunity of transporting manure to agricultural soils deficient in P. Since N is conserved, both liquid and solid fractions could be valuable fertilizer manure by-products.


Assuntos
Resíduos Industriais , Magnésio/química , Esterco/análise , Fosfatos/química , Fósforo/química , Animais , Cálcio/análise , Precipitação Química , Eletrólise , Concentração de Íons de Hidrogênio , Magnésio/análise , Metalurgia , Nitrogênio/análise , Fosfatos/análise , Fósforo/análise , Suínos
14.
Ambio ; 44 Suppl 2: S252-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25681982

RESUMO

We analyzed the linearity of relationships between soil test P (STP) and cumulative phosphorus (P) budget using data from six long-term fertilized grassland sites in four countries: France (Ercé and Gramond), Switzerland (Les Verrières), Canada (Lévis), and Finland (Maaninka and Siikajoki). STP was determined according to existing national guidelines. A linear-plateau model was used to determine the presence of deflection points in the relationships. Deflection points with (x, y) coordinates were observed everywhere but Maaninka. Above the deflection point, a significant linear relationship was obtained (0.33 < r (2) < 0.72) at four sites, while below the deflection point, the relationship was not significant, with a negligible rate of STP decrease. The relationship was not linear over the range of STP encountered at most sites, suggesting a need for caution when using the P budget approach to predict STP changes in grasslands, particularly in situations of very low P fertilization. Our study provides insights and description of a tool to improve global P strategies aimed at maintaining STP at levels adequate for grassland production while reducing the risk of P pollution of water.


Assuntos
Monitoramento Ambiental , Pradaria , Fósforo/análise , Solo/química , Canadá , Finlândia , França , Suíça
15.
J Environ Qual ; 32(2): 607-12, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12708685

RESUMO

Nitrogen loss by leaching is a major problem, particularly with crops requiring large amounts of N fertilizer. We evaluated the effect of N fertilization and irrigation on residual soil nitrate following potato (Solanum tuberosum L.) harvests in the upper St-John River valley of New Brunswick, Canada. Soil nitrate contents were measured to a 0.90-m depth in three treatments of N fertilization (0, 100, and 250 kg N ha(-1)) at two on-farm sites in 1995, and in four treatments of N fertilization (0, 50, 100, and 250 kg N ha(-1)) at four sites for each of two years (1996 and 1997) with and without supplemental irrigation. Residual soil NO3-N content increased from 33 kg NO3-N ha(-1) in the unfertilized check plots to 160 kg NO3-N ha(-1) when 250 kg N ha(-1) was applied. Across N treatments, residual soil NO3-N contents ranged from 30 to 105 kg NO3-N ha(-1) with irrigation and from 30 to 202 kg NO3-N ha(-1) without irrigation. Residual soil NO3-N content within the surface 0.30 m was related (R2 = 0.94) to the NO3-N content to a 0.90-m depth. Estimates of residual soil NO3-N content at the economically optimum nitrogen fertilizer application (Nop) ranged from 46 to 99 kg NO3-N ha(-1) under irrigated conditions and from 62 to 260 kg NO3-N ha(-1) under nonirrigated conditions, and were lower than the soil NO3-N content measured with 250 kg N ha(-1). We conclude that residual soil NO3-N after harvest can be maintained at a reasonable level (<70 kg NO3-N ha(-1)) when N fertilization is based on the economically optimum N application.


Assuntos
Fertilizantes , Nitratos/análise , Poluentes do Solo/análise , Agricultura , Monitoramento Ambiental , Solanum tuberosum
16.
Environ Sci Pollut Res Int ; 19(7): 2745-54, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22293910

RESUMO

PURPOSE: This study evaluates manure and chemical fertilizer effects on micronutrient (Fe, Mn, Cu, and Zn) content and availability in crops. METHODS: Seven treatments were selected, including three conventional fertilization treatments (NP, horse manure (M), and NP plus M (NPM)), three corresponding double rate fertilization (N2P2, M2, and N2P2M2), and a CK. Soil samples were collected and separated into four aggregates by wet-sieving in September 2009. Corn samples were collected and analyzed simultaneously. RESULTS: Treatment N2P2 increased DTPA extractable Fe, Mn, and Cu in soil by 732%, 388%, and 42%, whereas M2 decreased the corresponding values by 26%, 22%, and 10%, respectively, compared to CK. DTPA extractable Zn in soil and Zn in corn grain were higher in the M and M2 treatments than in the other treatments, and DTPA Zn was significantly correlated with soil organic carbon (SOC) in large macroaggregate, microaggregate, and silt + clay fractions. The Mn concentrations in corn stalks and grain were significantly correlated with DTPA extractable Mn in bulk soil and microaggregates, and Zn in stalks were significantly correlated with DTPA Zn in bulk soil, microaggregates, and large macroaggregates. CONCLUSIONS: Long-term application of horse manure could increase soil Zn availability and uptake by corn, possibly due to its activation by SOC. In contrast, chemical fertilizer application increased DTPA extractable Fe, Mn, and Cu in soil by reducing soil pH. Our results also suggest that Mn uptake by corn originated mainly in microaggregates, whereas Zn in crops was primarily sourced from large macroaggregates and microaggregates.


Assuntos
Fertilizantes/análise , Esterco , Micronutrientes/química , Micronutrientes/farmacocinética , Solo/química , Animais , Disponibilidade Biológica , Cavalos , Metais/química , Metais/farmacocinética , Caules de Planta/química , Sementes/química , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
17.
Environ Pollut ; 158(2): 409-15, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19781829

RESUMO

Human activities have resulted in cadmium (Cd) and sulfur (S) accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of excessive S supply on iron plaque formation and Cd accumulation in rice plants, using two Cd levels (0, 1.5 mg kg(-1)) combined with three S concentrations (0, 60, 120 mg kg(-1)). The results showed that excessive S supply significantly decreased Cd accumulation in brown rice due to the decrease of Cd availability and the increase of glutathione in rice leaves. But excessive S supply obviously increased Cd accumulation in roots due to the decrease of iron plaque formation on the root surface of rice. Therefore, excessive S supply may result in loss of rice yield, but it could effectively reduce Cd accumulation in brown rice exposed to Cd contaminated soils.


Assuntos
Cádmio/farmacocinética , Oryza/metabolismo , Poluentes do Solo/farmacocinética , Enxofre/metabolismo , Análise de Variância , Cádmio/metabolismo , China , Glutationa/análise , Oryza/crescimento & desenvolvimento , Folhas de Planta/química , Poluentes do Solo/metabolismo , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA