RESUMO
This work exploits the possibility of using CdSe/ZnS quantum dot (QD)-electrodes to monitor the metabolism of living cells based on photoelectrochemical (PEC) measurements. To realize that, the PEC setup is improved with respect to an enhanced photocurrent signal, better stability, and an increased signal-to-noise ratio, but also for a better biocompatibility of the sensor surface on which cells have been grown. To achieve this, a QD-TiO2 heterojunction is introduced with the help of atomic layer deposition (ALD). The heterojunction reduces the charge carrier recombination inside the semiconductor nanoparticles and improves the drift behavior. The PEC performance is carefully analyzed by adjusting the TiO2 thickness and combining this strategy with multilayer immobilizations of QDs. The optimal thickness of this coating is ≈5 nm; here, photocurrent generation can be enhanced significantly (e.g., for a single QD layer electrode by more than one order of magnitude at 0 V vs Ag/AgCl). The resulting optimized electrode is used for hydrogen peroxide (H2O2) sensing with a good sensitivity down to µmolar concentrations, reusability, stability, response rate, and repeatability. Finally, the sensing system is applied to monitor the activity of cells directly grown on top of the electrode surface.
RESUMO
Top-down proteomics deals with the characterization of intact biomolecules, which reduces the sample complexity and facilitates the detection of modifications at the protein level. The combination of the matrix-assisted laser desorption/ionization (MALDI) technique with time-of-flight (TOF) mass analysis allows for the generation of gaseous ions in low charge states from high-mass biomolecules, followed by their mass-to-charge ratio (m/z) separation, as high-mass ions drift down the flight tube more slowly than lighter ones. However, the detection efficiency of conventional microchannel plate (MCP) detectors is strongly reduced with decreasing ion velocity-corresponding to an increase in ion mass-which impedes the reliable detection of high-mass biomolecules. Herein, we present a simple modification of the MCP detector that allows for the amplification of the signal from ionized proteins of up to m/z 150 000. Two circular electrodes were assembled in front of the conventional detector and set to negative electrical voltages to affect the positively charged ions directly before they impinge on the MCP, possibly through a combination of a velocity boost and ion optical effects. In the present study, three booster electrode configurations were experimentally tested to maximize the signal intensification. Compared to the conventional MCP assembly, the signal intensity was amplified in a proof-of-concept experiment by a factor of 24.3 and of 10.7 for the singly charged BSA ion (m/z 66 400) and for the singly charged IgG ion (m/z 150 000), respectively, by applying the booster-MCP (BMCP) detector.
RESUMO
Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment.
RESUMO
Segmented magnetic nanowires are a promising route for the development of three dimensional data storage techniques. Such devices require a control of the coercive field and the coupling mechanisms between individual magnetic elements. In our study, we investigate electrodeposited nanomagnets within host templates using vibrating sample magnetometry and observe a strong dependence between nanowire length and coercive field (25 nm-5 µm) and diameter (25-45 nm). A transition from a magnetization reversal through coherent rotation to domain wall propagation is observed at an aspect ratio of approximately 2. Our results are further reinforced via micromagnetic simulations and angle dependent hysteresis loops. The found behavior is exploited to create nanowires consisting of a fixed and a free segment in a spin-valve like structure. The wires are released from the membrane and electrically contacted, displaying a giant magnetoresistance effect that is attributed to individual switching of the coupled nanomagnets. We develop a simple analytical model to describe the observed switching phenomena and to predict stable and unstable regimes in coupled nanomagnets of certain geometries.
RESUMO
Low-temperature atomic layer deposition (ALD) of TiO2, SiO2, and Al2O3 was applied to modify the surface and to tailor the diameter of nanochannels in etched ion-track polycarbonate membranes. The homogeneity, conformity, and composition of the coating inside the nanochannels are investigated for different channel diameters (18-55 nm) and film thicknesses (5-22 nm). Small angle x-ray scattering before and after ALD demonstrates conformal coating along the full channel length. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy provide evidence of nearly stoichiometric composition of the different coatings. By wet-chemical methods, the ALD-deposited film is released from the supporting polymer templates providing 30 µm long self-supporting nanotubes with walls as thin as 5 nm. Electrolytic ion-conductivity measurements provide proof-of-concept that combining ALD coating with ion-track nanotechnology offers promising perspectives for single-pore applications by controlled shrinking of an oversized pore to a preferred smaller diameter and fine-tuning of the chemical and physical nature of the inner channel surface.
RESUMO
The combination of superstructure-forming amphiphilic block copolymers and superparamagnetic iron oxide nanoparticles produces new nano/microcomposites with unique size-dependent properties. Herein, we demonstrate the controlled clustering of superparamagnetic iron oxide nanoparticles (SPIOs) ranging from discretely encapsulated SPIOs to giant clusters, containing hundreds or even more particles, using an amphiphilic polyisoprene-block-poly(ethylene glycol) diblock copolymer. Within these clusters, the SPIOs interact with each other and show new collective properties, neither obtainable with singly encapsulated nor with the bulk material. We observed cluster-size-dependent magnetic properties, influencing the blocking temperature, the magnetoviscosity of the liquid suspension, and the r2 relaxivity for magnetic iron oxide nanoparticles. The clustering methodology can be expanded also to other nanoparticle materials [CdSe/CdS/ZnS core/shell/shell quantum dots (QDs), CdSe/CdS quantum dots/quantum rods (QDQRs), gold nanoparticles, and mixtures thereof].
Assuntos
Compostos Férricos/química , Nanopartículas/química , Polímeros/química , Compostos de Cádmio/química , Fenômenos Magnéticos , Tamanho da Partícula , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Propriedades de Superfície , Tensoativos/químicaRESUMO
Rapid and reproducible assembly of aligned nanostructures on a wafer-scale is a crucial, yet one of the most challenging tasks in the incorporation of nanowires into integrated circuits. We present the synthesis of a periodic nanochannel template designed for electrochemical growth of perfectly aligned, rectangular nanowires over large areas. The nanowires can be electrically contacted and characterized in situ using a pre-patterned multi-point measurement platform. During the measurement the wires remain within a thick oxide matrix providing protection against breaking and oxidation. We use laser interference lithography, reactive ion etching and atomic layer deposition to create cm-long parallel nanochannels with characteristic dimensions as small as 40 nm. In a showcase study pulsed electrodeposition of iron is carried out creating rectangular shaped iron nanowires within the nanochannels. By design of the device, the grown wires are in contact with an integrated electrode system on both ends directly after the deposition. No further processing steps are required for electrical characterization, minimizing the risk of damage and oxidation. The developed nanowire measurement device allows for multi-probe resistance measurements and can easily be adopted for transistor applications. The guided, in-plane growth of electrodeposited nanowire arrays which are tunable in size and density paves the way for the incorporation of nanowires into a large variety of multifunctional devices.
RESUMO
Mass spectrometry is a crucial technology in numerous applications, but it places stringent requirements on the detector to achieve high resolution across a broad spectrum of ion masses. Low-dimensional nanostructures offer opportunities to tailor properties and achieve performance not reachable in bulk materials. Here, an array of sharp zinc oxide wires was directly grown on a 30 nm thin, free-standing silicon nitride nanomembrane to enhance its field emission (FE). The nanomembrane was subsequently used as a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry detector. When ionized biomolecules impinge on the backside of the surface-modified nanomembrane, the current-emitted from the wires on the membrane's front side-is amplified by the supplied thermal energy, which allows for the detection of the ions. An extensive simulation framework was developed based on a combination of lateral heat diffusion in the nanomembrane, heat diffusion along the wires, and FE, including Schottky barrier lowering, to investigate the impact of wire length and diameter on the FE. Our theoretical model suggests a significant improvement in the overall FE response of the nanomembrane by growing wires on top. Specifically, long thin wires are ideal to enhance the magnitude of the FE signal and to shorten its duration for the fastest response simultaneously, which could facilitate the future application of detectors in mass spectrometry with properties improved by low-dimensional nanostructures.
RESUMO
[This corrects the article DOI: 10.1021/acsomega.3c08932.].
RESUMO
Carbon nanotubes (CNTs) are well known for their outstanding field emission (FE) performance, facilitated by their unique combination of electrical, mechanical, and thermal properties. However, if the substrate of choice is a poor conductor, the electron supply towards the CNTs can be limited, restricting the FE current. Furthermore, ineffective heat dissipation can lead to emitter-substrate bond degradation, shortening the field emitters' lifetime. Herein, temperature-stable titanium nitride (TiN) was deposited by plasma-enhanced atomic layer deposition (PEALD) on different substrate types prior to the CNT growth. A turn-on field reduction of up to 59% was found for the emitters that were generated on TiN-coated bulk substrates instead of on pristine ones. This observation was attributed exclusively to the TiN layer as no significant change in the emitter morphology could be identified. The fabrication route and, consequently, improved FE properties were transferred from bulk substrates to free-standing, electrically insulating nanomembranes. Moreover, 3D-printed, polymeric microstructures were overcoated by atomic layer deposition (ALD) employing its high conformality. The results of our approach by combining ALD with CNT growth could assist the future fabrication of highly efficient field emitters on 3D scaffold structures regardless of the substrate material.
RESUMO
The use of solar energy for photocatalysis holds great potential for sustainable pollution reduction. Titanium dioxide (TiO2) is a benchmark material, effective under ultraviolet light but limited in visible light utilization, restricting its application in solar-driven photocatalysis. Previous studies have shown that semiconductor heterojunctions and nanostructuring can broaden the TiO2's photocatalytic spectral range. Semiconductor heterojunctions are interfaces formed between two different semiconductor materials that can be engineered. Especially, type II heterojunctions facilitate charge separation, and they can be obtained by combining TiO2 with, for example, iron(III) oxide (Fe2O3). Nanostructuring in the form of 3D inverse opals (IOs) demonstrated increased TiO2 light absorption efficiency of the material, by tailoring light-matter interactions through their photonic crystal structure and specifically their photonic stopband, which can give rise to a slow photon effect. Such effect is hypothesized to enhance the generation of free charges. This work focuses on the above-described effects simultaneously, through the synthesis of TiO2-Fe2O3 IOs via multilayer atomic layer deposition (ALD) and the characterization of their photocatalytic activities. Our results reveal that the complete functionalization of TiO2 IOs with Fe2O3 increases the photocatalytic activity through the slow photon effect and semiconductor heterojunction formation. We systematically explore the influence of Fe2O3 thickness on photocatalytic performance, and a maximum photocatalytic rate constant of 1.38 ± 0.09 h-1 is observed for a 252 nm template TiO2-Fe2O3 bilayer IO consisting of 16 nm TiO2 and 2 nm Fe2O3. Further tailoring the performance by overcoating with additional TiO2 layers enhances photoinduced crystallization and tunes photocatalytic properties. These findings highlight the potential of TiO2-Fe2O3 IOs for efficient water pollutant removal and the importance of precise nanostructuring and heterojunction engineering in advancing photocatalytic technologies.
RESUMO
Plasmonic gold nanoparticles injecting hot carriers into the topological insulator (TI) interface of Bi2Se3 nanoribbons are studied by resonant Raman spectroscopy. We resolve the impact of individual gold particles with sizes ranging from 140 nm down to less than 40 nm on the topological surface states of the nanoribbons. In resonance at 1.96 eV (633 nm), we find distinct phonon renormalization in the Eg2- and A1g2-modes that can be associated with plasmonic hot carrier injection. The phonon modes are strongly enhanced by a factor of 350 when tuning the excitation wavelengths into interband transition and in resonance with the surface plasmon of gold nanoparticles. At 633 nm wavelength, a plasmonic enhancement factor of 18 is observed indicating a contribution of hot carriers injected from the gold nanoparticles into the TI interface. Raman studies as a function of gold nanoparticle size reveal the strongest hot carrier injection for particles with size of 108 nm in agreement with the resonance energy of its surface plasmon. Hot carrier injection opens the opportunity to locally control the electronic properties of the TI by metal nanoparticles attached to the surface of nanoribbons.
RESUMO
The dynamics of the two domain prolyl-peptidyl cis/trans isomerase and chaperone SlyD was studied on a ps-to-ns time scale to correlate dynamic changes with the catalytic function. (15)N transversal and longitudinal relaxation rates as well as heteronuclear Overhauser effects were determined at different temperatures for Escherichia coli SlyD (EcSlyD) and for Thermus thermophilus SlyD (TtSlyD). With the well established extended Lipari-Szabo approach, the order parameter, S(2), the internal correlation time, τ(e), the exchange rate, R(ex), of the backbone amide protons, and the overall molecular tumbling time, τ(m), were determined. The study was extended to a relaxation analysis of the peptide bound state for both SlyD species. We found highly different relaxation and dynamic behavior of the two domains for free SlyD. Surprisingly, in the presence of a substrate for the chaperone domain, the ps-to-ns dynamics in the remote center of the prolyl-peptidyl cis/trans isomerization domain increases. We observed this crosstalk between the two domains for both EcSlyD and TtSlyD.
Assuntos
Proteínas de Bactérias/química , Espectroscopia de Ressonância Magnética/métodos , Chaperonas Moleculares/química , Peptidilprolil Isomerase/química , Estrutura Terciária de Proteína , Algoritmos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Cinética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptidilprolil Isomerase/metabolismo , Temperatura , Thermus thermophilus/enzimologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/químicaRESUMO
A combination of electrostatic force microscopy and optical microscopy was used to investigate the charge state of individual CdSe nanowires upon local illumination with a focused laser beam. The nanowires were found to be positively charged at the excitation spot and negatively charged at the distant end(s). For high laser powers, the amount of accumulated charges increases logarithmically with the laser power. These effects are described by a diffusion-based model where the results are in good agreement with the experimentally observed effects. On the basis of this model the charge imbalance along the nanowire should establish in the course of nanoseconds. The net charge separation within homogeneous nanowires upon local illumination is of importance for several electronic devices.
Assuntos
Compostos de Cádmio/química , Lasers , Nanofios/química , Compostos de Selênio/química , Nanotecnologia , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
The electron-phonon interaction at the interface between topological insulator (TI), namely, Bi2Se3 and Bi2Te3 two-dimensional (2D) nanoflakes, to a gold substrate as a function of TI flake thickness is studied by means of Raman scattering. We reveal the presence of interface-enhanced Raman scattering and a strong phonon renormalization induced by carriers injected from the gold substrate to the topological surface in contact. We derive the change of the electron-phonon coupling showing a nearly linear behavior as a function of layer thickness. The strongly nonlinear change of the Raman scattering cross section as a function of flake thickness can be associated with band bending effects at the metal-TI interface. Our results provide spectroscopic evidence for a strongly modified band structure in the first few quintuple layers of Bi2Se3 and Bi2Te3 in contact with gold.
RESUMO
The possibility to gradually increase the porosity of thin films facilitates a variety of applications, such as anti-reflective coatings, diffusion membranes, and the herein investigated tailored nanostructuring of a substrate for subsequent self-assembly processes. A low-temperature (<160 °C) preparation route for porous silicon oxide (porSiO2) thin films with porosities of about 60% and effective refractive indices down to 1.20 is tailored for bulk as well as free-standing membranes. Subsequently, both substrate types are successfully employed for the catalyst-assisted growth of nanowire-like zinc oxide (ZnO) field emitters by metal organic chemical vapor deposition. ZnO nanowires can be grown with a large aspect ratio and exhibit a good thermal and chemical stability, which makes them excellent candidates for field emitter arrays. We present a method that allows for the direct synthesis of nanowire-like ZnO field emitters on free-standing membranes using a porSiO2 template. Besides the application of porSiO2 for the catalyst-assisted growth of nanostructures and their use as field emission devices, the herein presented general synthesis route for the preparation of low refractive index films on other than bulk substrates-such as on free-standing, ultra-thin membranes-may pave the way for the employment of porSiO2 in micro-electro-mechanical systems.
RESUMO
Nanowire arrays used as cell culture substrates build a potent tool for advanced biological applications such as cargo delivery and biosensing. The unique topography of nanowire arrays, however, renders them a challenging growth environment for cells and explains why only basic cell lines have been employed in existing studies. Here, we present the culturing of human induced pluripotent stem cell-derived neural progenitor cells on rectangularly arranged nanowire arrays: In detail, we mapped the impact on proliferation, viability, and topography-induced membrane deformation across a multitude of array pitches (1, 3, 5, 10 µm) and nanowire lengths (1.5, 3, 5 µm). Against the intuitive expectation, a reduced proliferation was found on the arrays with the smallest array pitch of 1 µm and long NWs. Typically, cells settle in a fakir-like state on such densely-spaced nanowires and thus experience no substantial stress caused by nanowires indenting the cell membrane. However, imaging of F-actin showed a distinct reorganization of the cytoskeleton along the nanowire tips in the case of small array pitches interfering with regular proliferation. For larger pitches, the cell numbers depend on the NW lengths but proliferation generally continued although heavy deformations of the cell membrane were observed caused by the encapsulation of the nanowires. Moreover, we noticed a strong interaction of the nanowires with the nucleus in terms of squeezing and indenting. Remarkably, the cell viability is maintained at about 85% despite the massive deformation of the cells. Considering the enormous potential of human induced stem cells to study neurodegenerative diseases and the high cellular viability combined with a strong interaction with nanowire arrays, we believe that our results pave the way to apply nanowire arrays to human stem cells for future applications in stem cell research and regenerative medicine.
Assuntos
Células-Tronco Pluripotentes Induzidas , Nanofios , Células-Tronco Neurais , Linhagem Celular , Proliferação de Células , HumanosRESUMO
Nanostructured cell culture substrates featuring nanowire (NW) arrays have been applied to a variety of basic cell lines and rodent neurons to investigate cellular behavior or to stimulate cell responses. However, patient-derived human neurons-a prerequisite for studying e.g. neurodegenerative diseases efficiently-are rarely employed due to sensitive cell culture protocols and usually long culturing periods. Here, we present human patient induced pluripotent stem cell-derived neurons cultured on densely-spaced spiky silicon NW arrays (600 NWs/ 100 µm[Formula: see text] with NW lengths of 1 µm) which show mature electrophysiological characteristics after only 20 days of culturing. Exemplary neuronal growth and network formation on the NW arrays are demonstrated using scanning electron microscopy and immunofluorescence microscopy. The cells and neurites rest in a fakir-like settling state on the NWs only in contact with the very NW tips shown by cross-sectional imaging of the cell/NW interface using focused ion beam milling and confocal laser scanning microscopy. Furthermore, the NW arrays promote the cell culture by slightly increasing the share of differentiated neurons determined by the quantification of immunofluorescence microscopy images. The electrophysiological functionality of the neurons is confirmed with patch-clamp recordings showing the excellent capability to fire action potentials. We believe that the short culturing time to obtain functional human neurons generated from patient-derived neural progenitor cells and the robustness of this differentiation protocol to produce these neurons on densely-spaced spiky nanowire arrays open up new pathways for stem cell characterization and neurodegenerative disease studies.
Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Nanofios , Células-Tronco Neurais/fisiologia , Silício , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Células-Tronco Neurais/ultraestruturaRESUMO
TiO2 thin films deposited by atomic layer deposition (ALD) at low temperatures (<100 °C) are, in general, amorphous and exhibit a smaller refractive index in comparison to their crystalline counterparts. Nonetheless, low-temperature ALD is needed when the substrates or templates are based on polymeric materials, as the deposition has to be performed below their glass transition or melting temperatures. This is the case for photonic crystals generated via ALD infiltration of self-assembled polystyrene templates. When heated up, crystal phase transformations take place in the thin films or photonic structures, and the accompanying volume reduction as well as the burn-out of residual impurities can lead to mechanical instability. The introduction of cation doping (e.g., Al or Nb) in bulk TiO2 parts is known to alter phase transitions and to stabilize crystalline phases. In this work, we have developed low-temperature ALD super-cycles to introduce Al2O3 into TiO2 thin films and photonic crystals. The aluminum oxide content was adjusted by varying the TiO2:Al2O3 internal loop ratio within the ALD super-cycle. Both thin films and inverse opal photonic crystal structures were subjected to thermal treatments ranging from 200 to 1200 °C and were characterized by in- and ex-situ X-ray diffraction, spectroscopic ellipsometry, and spectroscopic reflectance measurements. The results show that the introduction of alumina affects the crystallization and phase transition temperatures of titania as well as the optical properties of the inverse opal photonic crystals (iPhC). The thermal stability of the titania iPhCs was increased by the alumina introduction, maintaining their photonic bandgap even after heat treatment at 900 °C and outperforming the pure titania, with the best results being achieved with the super-cycles corresponding to an estimated alumina content of 26 wt.%.