Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurol ; 31(1): e16052, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658515

RESUMO

BACKGROUND AND PURPOSE: Loss of appetite contributes to weight loss and faster disease progression in amyotrophic lateral sclerosis (ALS). Impairment of appetite control in ALS may include altered production or action of orexigenic (i.e., ghrelin) and anorexigenic (i.e., liver-expressed antimicrobial peptide 2 [LEAP2] and leptin) hormones. We aimed to determine if postprandial circulating ghrelin levels, LEAP2 levels, LEAP2:ghrelin molar ratio and leptin levels differ in ALS patients compared to non-neurodegenerative disease controls, and whether they are associated with disease progression and body composition. METHODS: In this prospective natural history study, we assessed postprandial plasma levels of ghrelin, LEAP2 and leptin in patients with ALS (cases; n = 46) and controls (controls; n = 43). For cases, measures were compared to changes in body weight, body composition and clinical outcomes. RESULTS: Postprandial ghrelin level was decreased by 52% in cases compared to controls (p = 0.013). LEAP2:ghrelin molar ratio was increased by 249% (p = 0.009), suggesting greater ghrelin resistance. Patients with lower LEAP2:ghrelin tended to have better functional capacity at assessment, as inferred by the ALS Functional Rating Scale-Revised (τ = -0.179, p = 0.086). Furthermore, ghrelin and LEAP2:ghrelin molar ratio correlated with diagnostic delay (ghrelin, τ = 0.223, p = 0.029; LEAP2:ghrelin, τ = -0.213, p = 0.037). Baseline ghrelin level, LEAP2 level, LEAP2:ghrelin ratio and leptin level were, however, not predictive of change in functional capacity during follow-up. Also, patients with higher postprandial ghrelin levels (hazard ratio [HR] 1.375, p = 0.048), and lower LEAP2:ghelin ratios (HR 0.828, p = 0.051) had an increased risk of earlier death. CONCLUSIONS: Reduced postprandial ghrelin levels, coupled with increased LEAP2:ghrelin molar ratios, suggests a loss of ghrelin action in patients with ALS. Given ghrelin's actions on appetite, metabolism and neuroprotection, reduced ghrelin and greater ghrelin resistance could contribute to impaired capacity to tolerate the physiological impact of disease. Comprehensive studies are needed to explain how ghrelin and LEAP2 contribute to body weight regulation and disease progression in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Leptina , Humanos , Leptina/metabolismo , Grelina/metabolismo , Hepcidinas/metabolismo , Estudos Prospectivos , Diagnóstico Tardio , Peso Corporal , Progressão da Doença , Composição Corporal
2.
Addict Biol ; 27(1): e13033, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33908131

RESUMO

Ghrelin is a gastric-derived peptide hormone with demonstrated impact on alcohol intake and craving, but the reverse side of this bidirectional link, that is, the effects of alcohol on the ghrelin system, remains to be fully established. To further characterize this relationship, we examined (1) ghrelin levels via secondary analysis of human laboratory alcohol administration experiments with heavy-drinking participants; (2) expression of ghrelin, ghrelin receptor, and ghrelin-O-acyltransferase (GOAT) genes (GHRL, GHSR, and MBOAT4, respectively) in post-mortem brain tissue from individuals with alcohol use disorder (AUD) versus controls; (3) ghrelin levels in Ghsr knockout and wild-type rats following intraperitoneal (i.p.) alcohol administration; (4) effect of alcohol on ghrelin secretion from gastric mucosa cells ex vivo and GOAT enzymatic activity in vitro; and (5) ghrelin levels in rats following i.p. alcohol administration versus a calorically equivalent non-alcoholic sucrose solution. Acyl- and total-ghrelin levels decreased following acute alcohol administration in humans, but AUD was not associated with changes in central expression of ghrelin system genes in post-mortem tissue. In rats, alcohol decreased acyl-ghrelin, but not des-acyl-ghrelin, in both Ghsr knockout and wild-type rats. No dose-dependent effects of alcohol were observed on acyl-ghrelin secretion from gastric mucosa cells or on GOAT acylation activity. Lastly, alcohol and sucrose produced distinct effects on ghrelin in rats despite equivalent caloric value. Our findings suggest that alcohol acutely decreases peripheral ghrelin concentrations in vivo, but not in proportion to alcohol's caloric value or through direct interaction with ghrelin-secreting gastric mucosal cells, the ghrelin receptor, or the GOAT enzyme.


Assuntos
Etanol/metabolismo , Grelina/metabolismo , Receptores de Grelina/metabolismo , Animais , Glicemia/metabolismo , Grelina/análogos & derivados , Humanos , Masculino , Ratos , Transdução de Sinais
3.
Am J Physiol Endocrinol Metab ; 319(2): E330-E337, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32543942

RESUMO

Ghrelin is a predominantly stomach-derived peptide hormone with many actions including regulation of food intake, body weight, and blood glucose. Plasma ghrelin levels are robustly regulated by feeding status, with its levels increasing upon caloric restriction and decreasing after food intake. At least some of this regulation might be due to direct responsiveness of ghrelin cells to changes in circulating nutrients, including glucose. Indeed, oral and parental glucose administration to humans and mice lower plasma ghrelin. Also, dissociated mouse gastric mucosal cell preparations, which contain ghrelin cells, decrease ghrelin secretion when cultured in high ambient glucose. Here, we used primary cultures of mouse gastric mucosal cells in combination with an array of pharmacological tools to examine the potential role of changed intracellular oxidative stress in glucose-restricted ghrelin secretion. The antioxidants resveratrol, SRT1720, and curcumin all markedly increased ghrelin secretion. Furthermore, three different selective activators of Nuclear factor erythroid-derived-2-like 2 (Nrf2), a master regulator of the antioxidative cellular response to oxidative stress, increased ghrelin secretion. These antioxidant compounds blocked the inhibitory effects of glucose on ghrelin secretion. Therefore, we conclude that lowering oxidative stress within ghrelin cells stimulates ghrelin secretion and blocks the direct effects of glucose on ghrelin cells to inhibit ghrelin secretion.


Assuntos
Mucosa Gástrica/metabolismo , Grelina/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/farmacologia , Células Cultivadas , Curcumina/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Glucose/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/fisiologia , Resveratrol/farmacologia
4.
Cell Biol Int ; 41(3): 320-327, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28067437

RESUMO

Ghrelin is abundantly produced in the stomach. Here, we found that glutamate decreased ghrelin expression and release in ghrelin-producing cells, and decreased levels of food intake and plasma acyl-ghrelin in mice. Treatment with siRNA of G protein-coupled receptor, family C, group 5, member B (GPRC5B) in ghrelin-producing cell lines completely blocked the effect of glutamate-induced ghrelin suppression. In addition, glutamate inhibited ghrelin release via the extracellular signal-regulated kinase (ERK) activity pathway, and stimulated CREB2 mRNA expression in ghrelin-producing cell lines. These results suggest that glutamate inhibits ghrelin release via ERK-CREB2 pathway. These results suggest that the GPRC5B-ERK-CREB2 pathway is involved in the inhibition of ghrelin expression and secretion in ghrelin cells.


Assuntos
Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Grelina/metabolismo , Ácido Glutâmico/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
J Neurosci ; 33(7): 2807-20, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407940

RESUMO

Reproductive function requires timely secretion of gonadotropin-releasing hormone, which is controlled by a complex excitatory/inhibitory network influenced by sex steroids. Kiss1 neurons are fundamental players in this network, but it is currently unclear whether different conditions of circulating sex steroids directly alter Kiss1 neuronal activity. Here, we show that Kiss1 neurons in the anteroventral periventricular and anterior periventricular nuclei (AVPV/PeN) of males and females exhibit a bimodal resting membrane potential (RMP) influenced by K(ATP) channels, suggesting the presence of two neuronal populations defined as type I (irregular firing patterns) and type II (quiescent). Kiss1 neurons in the arcuate nucleus (Arc) are also composed of firing and quiescent cells, but unlike AVPV/PeN neurons, the range of RMPs did not follow a bimodal distribution. Moreover, Kiss1 neuronal activity in the AVPV/PeN, but not in the Arc, is sexually dimorphic. In females, estradiol shifts the firing pattern of AVPV/PeN Kiss1 neurons and alters cell capacitance and spontaneous IPSCs amplitude of AVPV/PeN and Arc Kiss1 populations in an opposite manner. Notably, mice with selective deletion of estrogen receptor α (ERα) from Kiss1 neurons show cellular activity similar to that observed in ovariectomized females, suggesting that estradiol-induced changes in Kiss1 cellular properties require ERα. We also show that female prepubertal Kiss1 neurons are under higher inhibitory influence and all recorded AVPV/PeN Kiss1 neurons were spontaneously active. Collectively, our findings indicate that changes in cellular activity may underlie Kiss1 action in pubertal initiation and female reproduction.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Kisspeptinas/fisiologia , Neurônios/fisiologia , Animais , Biofísica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Retroalimentação Fisiológica/fisiologia , Feminino , Hormônios Esteroides Gonadais/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Canais KATP/fisiologia , Masculino , Camundongos , Núcleos da Linha Média do Tálamo/fisiologia , Ovariectomia , Técnicas de Patch-Clamp , Maturidade Sexual/fisiologia
6.
Am J Physiol Endocrinol Metab ; 306(1): E28-35, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24222669

RESUMO

Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, is produced predominantly in the stomach. It has been reported that endogenous ghrelin levels are increased by fasting and decreased immediately after feeding and that fasting-induced ghrelin release is controlled by the sympathetic nervous system. However, the mechanisms of plasma ghrelin decrement after feeding are poorly understood. Here, we studied the control of ghrelin secretion using ghrelin-producing cell lines and found that these cells express high levels of mRNA encoding G-protein coupled receptor 120 (GPR120). Addition of GW-9508 (a GPR120 chemical agonist) and α-linolenic acid (a natural ligand for GPR120) inhibited the secretion of ghrelin by ∼50 and 70%, respectively. However, the expression levels of preproghrelin and ghrelin O-acyltransferase (GOAT) mRNAs were not influenced by GW-9508. In contrast, the expression levels of prohormone convertase 1 were decreased significantly by GW-9508 incubation. Moreover, we observed that the inhibitory effect of GW-9508 on ghrelin secretion was blocked by a small interfering RNA (siRNA) targeting the sequence of GPR120. Furthermore, pretreatment with GW-9508 blocked the effect of the norepinephrine (NE)-induced ghrelin elevation in ghrelin cell lines. In addition, we showed that GW-9508 inhibited ghrelin secretion via extracellular signal-regulated kinase activity in ghrelin cell lines. Finally, we found that GW-9508 decreased plasma ghrelin levels in mice. These results suggest that the decrease of ghrelin secretion after feeding is induced partially by long-chain fatty acids that act directly on gastric GPR120-expressing ghrelin cells.


Assuntos
Grelina/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ácidos Graxos/farmacologia , Alimentos , Mucosa Gástrica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia , Pró-Proteína Convertase 1/genética , RNA Mensageiro/análise , RNA Interferente Pequeno/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Estômago/química , Neoplasias Gástricas/metabolismo , Ácido alfa-Linolênico/farmacologia
7.
Am J Physiol Endocrinol Metab ; 306(6): E606-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24473434

RESUMO

Ghrelin is a metabolic signal regulating energy homeostasis. Circulating ghrelin levels rise during starvation and fall after a meal, and therefore, ghrelin may function as a signal of negative energy balance. Ghrelin may also act as a modulator of reproductive physiology, as acute ghrelin administration suppresses gonadotropin secretion and inhibits the neuroendocrine reproductive axis. Interestingly, ghrelin's effect in female metabolism varies according to the estrogen milieu predicting an interaction between ghrelin and estrogens, likely at the hypothalamic level. Here, we show that ghrelin receptor (GHSR) and estrogen receptor-α (ERα) are coexpressed in several hypothalamic sites. Higher levels of circulating estradiol increased the expression of GHSR mRNA and the coexpression of GHSR mRNA and ERα selectively in the arcuate nucleus (ARC). Subsets of preoptic and ARC Kiss1 neurons coexpressed GHSR. Increased colocalization was observed in ARC Kiss1 neurons of ovariectomized estradiol-treated (OVX + E2; 80%) compared with ovariectomized oil-treated (OVX; 25%) mice. Acute actions of ghrelin on ARC Kiss1 neurons were also modulated by estradiol; 75 and 22% of Kiss1 neurons of OVX + E2 and OVX mice, respectively, depolarized in response to ghrelin. Our findings indicate that ghrelin and estradiol may interact in several hypothalamic sites. In the ARC, high levels of E2 increase GHSR mRNA expression, modifying the colocalization rate with ERα and Kiss1 and the proportion of Kiss1 neurons acutely responding to ghrelin. Our findings indicate that E2 alters the responsiveness of kisspeptin neurons to metabolic signals, potentially acting as a critical player in the metabolic control of the reproductive physiology.


Assuntos
Estradiol/metabolismo , Receptor alfa de Estrogênio/agonistas , Grelina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Receptores de Grelina/agonistas , Acilação , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/sangue , Estradiol/uso terapêutico , Receptor alfa de Estrogênio/metabolismo , Terapia de Reposição de Estrogênios , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipotálamo/efeitos dos fármacos , Kisspeptinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Ovariectomia/efeitos adversos , Ratos , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Nat Rev Endocrinol ; 20(4): 228-238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38123819

RESUMO

Despite the growing popular interest in sleep and diet, many gaps exist in our scientific understanding of the interaction between circadian rhythms and metabolism. In this Review, we explore a promising, bidirectional role for ghrelin in mediating this interaction. Ghrelin both influences and is influenced by central and peripheral circadian systems. Specifically, we focus on how ghrelin impacts outputs of circadian rhythm, including neuronal activity, circulating growth hormone levels, locomotor activity and eating behaviour. We also consider the effects of circadian rhythms on ghrelin expression and the consequences of disrupted circadian patterns, such as shift work and jet lag, on ghrelin secretion. Our Review is aimed at both the casual reader interested in gaining more insight into the scientific context surrounding the trending topics of sleep and metabolism, as well as experienced scientists in the fields of ghrelin and circadian biology seeking inspiration and a comprehensive overview of how these fields are related.


Assuntos
Relógios Circadianos , Grelina , Humanos , Grelina/metabolismo , Grelina/farmacologia , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Dieta , Síndrome do Jet Lag
9.
Front Physiol ; 15: 1363708, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638279

RESUMO

Osteoporosis after bariatric surgery is an increasing health concern as the rate of bariatric surgery has risen. In animal studies mimicking bariatric procedures, bone disease, together with decreased serum levels of Ca2+, Mg2+ and the gastric hormone Ghrelin were described. Ghrelin regulates metabolism by binding to and activating the growth hormone secretagogue receptor (GHSR) which is also expressed in the kidney. As calcium and magnesium are key components of bone, we tested the hypothesis that Ghrelin-deficiency contributes to osteoporosis via reduced upregulation of the renal calcium channel TRPV5 and the heteromeric magnesium channel TRPM6/7. We expressed GHSR with TRPV5 or TRPM6/7 channel in HEK293 cells and treated them with purified Ghrelin. Whole-cell current density was analyzed by patch-clamp recording. Nephron-specific gene expression was performed by tubular microdissection followed by qPCR in wild-type (WT) mice, and immunofluorescent imaging of GHSR-eGFP mice. Tubular magnesium homeostasis was analyzed in GHSR-null and WT mice at baseline and after caloric restriction. After Ghrelin exposure, whole-cell current density did not change for TRPV5 but increased for TRPM6/7 in a dose-dependent fashion. Applying the Ghrelin-mimetic (D-Trp7, Ala8,D-Phe10)-α-MSH (6-11) amide without and with the GHSR antagonist (D-Lys3)-GHRP6, we confirmed the stimulatory role of Ghrelin towards TRPM6/7. As GHSR initiates downstream signaling via protein kinase A (PKA), we found that the PKA inhibitor H89 abrogated TRPM6/7 stimulation by Ghrelin. Similarly, transfected Gαs, but not the Gαs mutant Q227L, nor Gαi2, Gαq, or Gα13 upregulated TRPM6/7 current density. In microdissected TALs and DCTs similar levels of GHSR mRNA were detected. In contrast, TRPM6 mRNA was expressed in the DCT and also detected in the TAL at 25% expression compared to DCT. Immunofluorescent studies using reporter GHSR-eGFP mice showed a strong eGFP signal in the TAL but surprisingly displayed no eGFP signal in the DCT. In 3-, 6-, and 9-month-old GHSR-null and WT mice, baseline serum magnesium was not significantly different, but 24-h urinary magnesium excretion was elevated in 9-month-old GHSR-null mice. In calorically restricted GHSR-null mice, we detected excess urinary magnesium excretion and reduced serum magnesium levels compared to WT mice. The kidneys from calorically restricted WT mice showed upregulated gene expression of magnesiotropic genes Hnf1b, Cldn-16, Cldn-19, Fxyd-2b, and Parvalbumin compared to GHSR-null mice. Our in vitro studies show that Ghrelin stimulates TRPM6/7 via GHSR and Gαs-PKA signaling. The murine studies are consistent with Ghrelin-GHSR signaling inducing reduced urinary magnesium excretion, particularly in calorically restricted mice when Ghrelin levels are elevated. This effect may be mediated by Ghrelin-upregulation of TRPM6 in the TAL and/or upregulation of other magnesiotropic genes. We postulate that rising Ghrelin levels with hunger contribute to increased renal Mg2+ reabsorption to compensate for lack of enteral Mg2+ uptake.

10.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38626085

RESUMO

Reducing ghrelin by ghrelin gene knockout (GKO), ghrelin-cell ablation, or high-fat diet feeding increases islet size and ß-cell mass in male mice. Here we determined if reducing ghrelin also enlarges islets in females and if pregnancy-associated changes in islet size are related to reduced ghrelin. Islet size and ß-cell mass were larger (P = .057 for ß-cell mass) in female GKO mice. Pregnancy was associated with reduced ghrelin and increased liver-expressed antimicrobial peptide-2 (LEAP2; a ghrelin receptor antagonist) in wild-type mice. Ghrelin deletion and pregnancy each increased islet size (by ∼19.9-30.2% and ∼34.9-46.4%, respectively), percentage of large islets (>25 µm2×103, by ∼21.8-42% and ∼21.2-41.2%, respectively), and ß-cell mass (by ∼15.7-23.8% and ∼65.2-76.8%, respectively). Neither islet cross-sectional area, ß-cell cross-sectional area, nor ß-cell mass correlated with plasma ghrelin, although all positively correlated with LEAP2 (P = .081 for islet cross-sectional area). In ad lib-fed mice, there was an effect of pregnancy, but not ghrelin deletion, to change (raise) plasma insulin without impacting blood glucose. Similarly, there was an effect of pregnancy, but not ghrelin deletion, to change (lower) blood glucose area under the curve during a glucose tolerance test. Thus, genetic deletion of ghrelin increases islet size and ß-cell cross-sectional area in female mice, similar to males. Yet, despite pregnancy-associated reductions in ghrelin, other factors appear to govern islet enlargement and changes to insulin sensitivity and glucose tolerance in the setting of pregnancy. In the case of islet size and ß-cell mass, one of those factors may be the pregnancy-associated increase in LEAP2.


Assuntos
Grelina , Ilhotas Pancreáticas , Animais , Feminino , Masculino , Camundongos , Gravidez , Peptídeos Catiônicos Antimicrobianos , Glicemia/metabolismo , Grelina/metabolismo , Insulina/metabolismo , Insulina/sangue , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos
11.
Mol Metab ; 89: 102025, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39236785

RESUMO

OBJECTIVE: Although the metabolic state of an organism affects olfactory function, the precise mechanisms and their impact on behavior and metabolism remain unknown. Here, we assess whether ghrelin receptors (GHSRs) in the olfactory bulb (OB) increase olfactory function and influence foraging behaviors and metabolism. METHODS: We performed a detailed behavioural and metabolic analysis in mice lacking GHSRs in the OB (OBGHSR deletion). We also analsyed OB scRNA-seq and spatial transcriptomic datasets to assess GHSR+ cells in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. RESULTS: OBGHSR deletion affected olfactory discrimination and habituation to both food and non-food odors. Anxiety-like and depression-like behaviors were significantly greater after OBGHSR deletion, whereas exploratory behavior was reduced, with the greatest effect under fasted conditions. OBGHSR deletion impacted feeding behavior as evidenced by altered bout number and duration, as well as buried food-seeking. OBGHSR deletion increased body weight and fat mass, spared fat utilisation on a chow diet and impaired glucose metabolism indicating metabolic dysfunction. Cross referenced analysis of OB scRNA-seq and spatial transcriptomic datasets revealed GHSR+ glutamate neurons in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. Ablation of glutamate neurons in the OB reduced ghrelin-induced food finding and phenocopied results seen after OBGHSR deletion. CONCLUSIONS: OBGHSRs help to maintain olfactory function, particularly during hunger, and facilitate behavioral adaptations that optimise food-seeking in anxiogenic environments, priming metabolic pathways in preparation for food consumption.


Assuntos
Comportamento Alimentar , Fome , Bulbo Olfatório , Animais , Bulbo Olfatório/metabolismo , Camundongos , Fome/fisiologia , Masculino , Comportamento Alimentar/fisiologia , Receptores de Grelina/metabolismo , Receptores de Grelina/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais , Olfato/fisiologia , Comportamento Exploratório/fisiologia , Camundongos Knockout , Neurônios/metabolismo
12.
Endocrinology ; 165(11)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39331742

RESUMO

The hormone ghrelin serves a protective role in cancer-related anorexia-cachexia syndrome (CACS)-a condition in which plasma levels of ghrelin rise, its administration lessens CACS severity, and experimentally reduced signaling by its receptor (GHSR) worsens fat loss and anorexia and accelerates death. Yet, actions for the related hormone liver-expressed antimicrobial peptide-2 (LEAP2), which is an endogenous GHSR antagonist, are unexplored in CACS. Here, we found that plasma LEAP2 and LEAP2/ghrelin ratio were lower in Lewis lung carcinoma (LLC) and RM-9 prostate cancer CACS mouse models. Ghrelin deletion exaggerated losses of tumor-free body weight and fat mass, reduced food intake, reduced soleus muscle weight, and/or lowered grip strength in LLC or RM-9 tumor-bearing mice. LEAP2 deletion lessened reductions in tumor-free body weight and fat mass and increased food intake in LLC or RM-9 tumor-bearing mice. In a 55-subject cohort of patients with CACS or weight-stable cancer, the plasma LEAP2/total ghrelin ratio was negatively correlated with 6-month weight change preceding blood collection. These data demonstrate that ghrelin deletion exacerbates CACS in the LLC and RM-9 tumor-bearing mouse models while contrastingly, LEAP2 deletion reduces measures of CACS in these tumor-bearing mouse models. Further, they suggest that lower plasma LEAP2/ghrelin ratio protects against worsened CACS.


Assuntos
Anorexia , Caquexia , Carcinoma Pulmonar de Lewis , Grelina , Camundongos Endogâmicos C57BL , Idoso , Animais , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Anorexia/etiologia , Anorexia/metabolismo , Caquexia/etiologia , Caquexia/metabolismo , Caquexia/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/genética , Ingestão de Alimentos/fisiologia , Grelina/sangue , Camundongos Knockout , Neoplasias/complicações , Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo
13.
Mol Metab ; 84: 101950, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697291

RESUMO

OBJECTIVE: The number of individuals affected by metabolic dysfunction associated fatty liver disease [1] is on the rise, yet hormonal contributors to the condition remain incompletely described and only a single FDA-approved treatment is available. Some studies suggest that the hormones ghrelin and LEAP2, which act as agonist and antagonist/inverse agonist, respectively, for the G protein coupled receptor GHSR, may influence the development of MAFLD. For instance, ghrelin increases hepatic fat whereas synthetic GHSR antagonists do the opposite. Also, hepatic steatosis is less prominent in standard chow-fed ghrelin-KO mice but more prominent in 42% high-fat diet-fed female LEAP2-KO mice. METHODS: Here, we sought to determine the therapeutic potential of a long-acting LEAP2 analog (LA-LEAP2) to treat MAFLD in mice. LEAP2-KO and wild-type littermate mice were fed a Gubra-Amylin-NASH (GAN) diet for 10 or 40 wks, with some randomized to an additional 28 or 10 days of GAN diet, respectively, while treated with LA-LEAP2 vs Vehicle. Various metabolic parameters were followed and biochemical and histological assessments of MAFLD were made. RESULTS: Among the most notable metabolic effects, daily LA-LEAP2 administration to both LEAP2-KO and wild-type littermates during the final 4 wks of a 14 wk-long GAN diet challenge markedly reduced liver weight, hepatic triglycerides, plasma ALT, hepatic microvesicular steatosis, hepatic lobular inflammation, NASH activity scores, and prevalence of higher-grade fibrosis. These changes were accompanied by prominent reductions in body weight, without effects on food intake, and reduced plasma total cholesterol. Daily LA-LEAP2 administration during the final 10 d of a 41.5 wk-long GAN diet challenge also reduced body weight, plasma ALT, and plasma total cholesterol in LEAP2-KO and wild-type littermates and prevalence of higher grade fibrosis in LEAP2-KO mice. CONCLUSIONS: Administration of LA-LEAP2 to mice fed a MAFLD-prone diet markedly improves several facets of MAFLD, including hepatic steatosis, hepatic lobular inflammation, higher-grade hepatic fibrosis, and transaminitis. These changes are accompanied by prominent reductions in body weight and lowered plasma total cholesterol. Taken together, these data suggest that LEAP2 analogs such as LA-LEAP2 hold promise for the treatment of MAFLD and obesity.


Assuntos
Dieta Hiperlipídica , Inflamação , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Redução de Peso , Animais , Camundongos , Inflamação/metabolismo , Redução de Peso/efeitos dos fármacos , Feminino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/tratamento farmacológico , Masculino , Grelina/metabolismo
14.
Appetite ; 64: 81-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23318656

RESUMO

Both chronic stress and antidepressant medications have been associated with changes in body weight. In the current study, we investigate mechanisms by which stress and antidepressants interact to affect meal patterns. A group of mice was subjected to the chronic social defeat stress model of major depression followed by fluoxetine treatment and was subsequently analyzed for food intake using metabolic cages. We report that chronic social defeat stress increases food intake by specifically increasing meal size, an effect that is reversed by fluoxetine treatment. In an attempt to gain mechanistic insight into changes in meal patterning induced by stress and fluoxetine, fasting serum samples were collected every 4h over a 24-h period, and acyl-ghrelin, leptin, and corticosterone levels were measured. Chronic stress induces a peak in acyl-ghrelin levels just prior to the onset of the dark phase, which is shifted in mice treated with fluoxetine. Taken together, these results indicate that stress increases food intake by decreasing satiation, and that fluoxetine can reverse stress-induced changes in meal patterns.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Ingestão de Alimentos , Ingestão de Energia , Fluoxetina/uso terapêutico , Refeições , Obesidade , Estresse Psicológico/complicações , Animais , Doença Crônica , Corticosterona/sangue , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Energia/efeitos dos fármacos , Fluoxetina/farmacologia , Grelina/sangue , Leptina/sangue , Refeições/efeitos dos fármacos , Camundongos , Obesidade/sangue , Obesidade/etiologia , Obesidade/prevenção & controle , Saciação/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Meio Social
15.
Proc Natl Acad Sci U S A ; 107(36): 15868-73, 2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20713709

RESUMO

Ghrelin, an octanoylated peptide hormone produced in the stomach, rises dramatically in mouse plasma during chronic severe calorie deprivation, an event that is essential to maintain life. The mechanism for this increase is not understood. Here, we study the control of ghrelin secretion in tissue culture cells derived from mice bearing ghrelinomas induced by a tissue-specific SV40 T-antigen transgene. We found that the ghrelin-secreting cells express high levels of mRNA encoding beta(1)-adrenergic receptors. Addition of norepinephrine or epinephrine to the culture medium stimulated ghrelin secretion, and this effect was blocked by atenolol, a selective beta(1)-adrenergic antagonist. When WT mice were treated with reserpine to deplete adrenergic neurotransmitters from sympathetic neurons, the fasting-induced increase in plasma ghrelin was blocked. Inhibition was also seen following atenolol administration. We conclude that ghrelin secretion during fasting is induced by adrenergic agents released by sympathetic neurons and acting directly on beta(1) receptors on the ghrelin-secreting cells of the stomach.


Assuntos
Grelina/metabolismo , Neoplasias Experimentais/metabolismo , Receptores Adrenérgicos beta 1/fisiologia , Animais , Perfilação da Expressão Gênica , Camundongos , Neoplasias Experimentais/patologia , RNA Mensageiro/genética , Ratos , Receptores Adrenérgicos beta 1/genética
16.
J Neuroendocrinol ; 35(1): e13224, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580314

RESUMO

The stomach-derived octanoylated peptide ghrelin was discovered in 1999 and recognized as an endogenous agonist of the growth hormone secretagogue receptor (GHSR). Subsequently, ghrelin has been shown to play key roles in controlling not only growth hormone secretion, but also a variety of other physiological functions including, but not limited to, food intake, reward-related behaviors, glucose homeostasis and gastrointestinal tract motility. Importantly, a non-acylated form of ghrelin, desacyl-ghrelin, can also be detected in biological samples. Desacyl-ghrelin, however, does not bind to GHSR at physiological levels, and its physiological role has remained less well-characterized than that of ghrelin. Ghrelin and desacyl-ghrelin are currently referred to in the literature using many different terms, highlighting the need for a consistent nomenclature. The variability of terms used to designate ghrelin can lead not only to confusion, but also to miscommunication, especially for those who are less familiar with the ghrelin literature. Thus, we conducted a survey among experts who have contributed to the ghrelin literature aiming to identify whether a consensus may be reached. Based on the results of this consensus, we propose using the terms "ghrelin" and "desacyl-ghrelin" to refer to the hormone itself and its non-acylated form, respectively. Based on the results of this consensus, we further propose using the terms "GHSR" for the receptor, and "LEAP2" for liver-expressed antimicrobial peptide 2, a recently recognized endogenous GHSR antagonist/inverse agonist.


Assuntos
Hepcidinas , Receptores de Grelina , Receptores de Grelina/metabolismo , Agonismo Inverso de Drogas , Consenso
17.
J Alzheimers Dis ; 96(4): 1579-1592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38007666

RESUMO

BACKGROUND: Emerging evidence has revealed that dysregulation of the hormone ghrelin and its receptor, growth hormone secretagogue receptor (GHSR), contributes to the pathogenesis of Alzheimer's disease (AD). Specifically, defective GHSR function and resultant hippocampal ghrelin resistance are linked to hippocampal synaptic injury in AD paradigms. Also, AD patients exhibit elevated ghrelin activation. However, the detailed molecular mechanisms of hippocampal GHSR dysfunction and the relevance of ghrelin elevation to hippocampal ghrelin resistance in AD-relevant pathological settings are not fully understood. OBJECTIVE: In the current study, we employed a recently established mouse line of AD risk [humanized amyloid beta knockin (hAß KI mice), also referred to as a mouse model of late-onset AD in previous literature] to further define the role of ghrelin system dysregulation in the development of AD. METHODS: We employed multidisciplinary techniques to determine the change of plasma ghrelin and the functional status of GHSR in hAß KI mice as well as primary neuron cultures. RESULTS: We observed concurrent plasma ghrelin elevation and hippocampal GHSR desensitization with disease progression. Further examination excluded the possibility that ghrelin elevation is a compensatory change in response to GHSR dysfunction. In contrast, further in vitro and in vivo results show that agonist-mediated overstimulation potentiates GHSR desensitization through enhanced GHSR internalization. CONCLUSIONS: These findings suggest that circulating ghrelin elevation is a pathological event underlying hippocampal GHSR dysfunction, culminating in hippocampal ghrelin resistance and resultant synaptic injury in late-onset AD-related settings.


Assuntos
Doença de Alzheimer , Grelina , Humanos , Camundongos , Animais , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Peptídeos beta-Amiloides , Hipocampo/metabolismo , Envelhecimento/genética , Doença de Alzheimer/genética
18.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212281

RESUMO

Elderly individuals frequently report cognitive decline, while various studies indicate hippocampal functional declines with advancing age. Hippocampal function is influenced by ghrelin through hippocampus-expressed growth hormone secretagogue receptor (GHSR). Liver-expressed antimicrobial peptide 2 (LEAP2) is an endogenous GHSR antagonist that attenuates ghrelin signaling. Here, we measured plasma ghrelin and LEAP2 levels in a cohort of cognitively normal individuals older than 60 and found that LEAP2 increased with age while ghrelin (also referred to in literature as "acyl-ghrelin") marginally declined. In this cohort, plasma LEAP2/ghrelin molar ratios were inversely associated with Mini-Mental State Examination scores. Studies in mice showed an age-dependent inverse relationship between plasma LEAP2/ghrelin molar ratio and hippocampal lesions. In aged mice, restoration of the LEAP2/ghrelin balance to youth-associated levels with lentiviral shRNA Leap2 downregulation improved cognitive performance and mitigated various age-related hippocampal deficiencies such as CA1 region synaptic loss, declines in neurogenesis, and neuroinflammation. Our data collectively suggest that LEAP2/ghrelin molar ratio elevation may adversely affect hippocampal function and, consequently, cognitive performance; thus, it may serve as a biomarker of age-related cognitive decline. Moreover, targeting LEAP2 and ghrelin in a manner that lowers the plasma LEAP2/ghrelin molar ratio could benefit cognitive performance in elderly individuals for rejuvenation of memory.


Assuntos
Disfunção Cognitiva , Hepcidinas , Animais , Camundongos , Grelina , Hipocampo/metabolismo , Receptores de Grelina/metabolismo , Humanos , Pessoa de Meia-Idade , Envelhecimento
19.
Mol Metab ; 78: 101826, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898450

RESUMO

OBJECTIVE: The sensory detection of food and food cues suppresses Agouti related peptide (AgRP) neuronal activity prior to consumption with greatest suppression occurring in response to highly caloric food or interoceptive energy need. However, the interoceptive mechanisms priming an appropriate AgRP neural response to external sensory information of food availability remain unexplored. Since hunger increases plasma ghrelin, we hypothesized that ghrelin receptor (GHSR) signalling on AgRP neurons is a key interoceptive mechanism integrating energy need with external sensory cues predicting caloric availability. METHODS: We used in vivo photometry to measure the effects of ghrelin administration or fasting on AgRP neural activity with GCaMP6s and dopamine release in the nucleus accumbens with GRAB-DA in mice lacking ghrelin receptors in AgRP neurons. RESULTS: The deletion of GHSR on AgRP neurons prevented ghrelin-induced food intake, motivation and AgRP activity. The presentation of food (peanut butter pellet) or a wooden dowel suppressed AgRP activity in fasted WT but not mice lacking GHSRs in AgRP neurons. Similarly, peanut butter and a wooden dowel increased dopamine release in the nucleus accumbens after ip ghrelin injection in WT but not mice lacking GHSRs in AgRP neurons. No difference in dopamine release was observed in fasted mice. Finally, ip ghrelin administration did not directly increase dopamine neural activity in the ventral tegmental area. CONCLUSIONS: Our results suggest that AgRP GHSRs integrate an interoceptive state of energy need with external sensory information to produce an optimal change in AgRP neural activity. Thus, ghrelin signalling on AgRP neurons is more than just a feedback signal to increase AgRP activity during hunger.


Assuntos
Ingestão de Alimentos , Grelina , Camundongos , Animais , Grelina/metabolismo , Proteína Relacionada com Agouti/metabolismo , Dopamina/metabolismo , Neurônios/metabolismo
20.
Front Endocrinol (Lausanne) ; 14: 1181856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334290

RESUMO

Introduction: Recurrent episodes of insulin-induced hypoglycemia in patients with diabetes mellitus can result in hypoglycemia-associated autonomic failure (HAAF), which is characterized by a compromised response to hypoglycemia by counterregulatory hormones (counterregulatory response; CRR) and hypoglycemia unawareness. HAAF is a leading cause of morbidity in diabetes and often hinders optimal regulation of blood glucose levels. Yet, the molecular pathways underlying HAAF remain incompletely described. We previously reported that in mice, ghrelin is permissive for the usual CRR to insulin-induced hypoglycemia. Here, we tested the hypothesis that attenuated release of ghrelin both results from HAAF and contributes to HAAF. Methods: C57BL/6N mice, ghrelin-knockout (KO) + control mice, and GhIRKO (ghrelin cell-selective insulin receptor knockout) + control mice were randomized to one of three treatment groups: a "Euglycemia" group was injected with saline and remained euglycemic; a 1X hypoglycemia ("1X Hypo") group underwent a single episode of insulin-induced hypoglycemia; a recurrent hypoglycemia ("Recurrent Hypo") group underwent repeated episodes of insulin-induced hypoglycemia over five successive days. Results: Recurrent hypoglycemia exaggerated the reduction in blood glucose (by ~30%) and attenuated the elevations in plasma levels of the CRR hormones glucagon (by 64.5%) and epinephrine (by 52.9%) in C57BL/6N mice compared to a single hypoglycemic episode. Yet, plasma ghrelin was equivalently reduced in "1X Hypo" and "Recurrent Hypo" C57BL/6N mice. Ghrelin-KO mice exhibited neither exaggerated hypoglycemia in response to recurrent hypoglycemia, nor any additional attenuation in CRR hormone levels compared to wild-type littermates. Also, in response to recurrent hypoglycemia, GhIRKO mice exhibited nearly identical blood glucose and plasma CRR hormone levels as littermates with intact insulin receptor expression (floxed-IR mice), despite higher plasma ghrelin in GhIRKO mice. Conclusions: These data suggest that the usual reduction of plasma ghrelin due to insulin-induced hypoglycemia is unaltered by recurrent hypoglycemia and that ghrelin does not impact blood glucose or the blunted CRR hormone responses during recurrent hypoglycemia.


Assuntos
Diabetes Mellitus , Hipoglicemia , Animais , Camundongos , Glicemia/metabolismo , Grelina , Hipoglicemia/induzido quimicamente , Hipoglicemia/genética , Insulina , Camundongos Endogâmicos C57BL , Receptor de Insulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA