Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Res ; 31(3): 461-471, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33574136

RESUMO

CRISPR-Cas9 deletion (CRISPR-del) is the leading approach for eliminating DNA from mammalian cells and underpins a variety of genome-editing applications. Target DNA, defined by a pair of double-strand breaks (DSBs), is removed during nonhomologous end-joining (NHEJ). However, the low efficiency of CRISPR-del results in laborious experiments and false-negative results. By using an endogenous reporter system, we show that repression of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-an early step in NHEJ-yields substantial increases in DNA deletion. This is observed across diverse cell lines, gene delivery methods, commercial inhibitors, and guide RNAs, including those that otherwise display negligible activity. We further show that DNA-PKcs inhibition can be used to boost the sensitivity of pooled functional screens and detect true-positive hits that would otherwise be overlooked. Thus, delaying the kinetics of NHEJ relative to DSB formation is a simple and effective means of enhancing CRISPR-deletion.


Assuntos
Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Edição de Genes , Deleção de Sequência , Animais , DNA/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo
2.
Mol Cancer ; 22(1): 82, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173782

RESUMO

CAR T cell-based therapies have revolutionized the treatment of hematological malignancies such as leukemia and lymphoma within the last years. In contrast to the success in hematological cancers, the treatment of solid tumors with CAR T cells is still a major challenge in the field and attempts to overcome these hurdles have not been successful yet. Radiation therapy is used for management of various malignancies for decades and its therapeutic role ranges from local therapy to a priming agent in cancer immunotherapy. Combinations of radiation with immune checkpoint inhibitors have already proven successful in clinical trials. Therefore, a combination of radiation therapy may have the potential to overcome the current limitations of CAR T cell therapy in solid tumor entities. So far, only limited research was conducted in the area of CAR T cells and radiation. In this review we will discuss the potential and risks of such a combination in the treatment of cancer patients.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Receptores de Antígenos de Linfócitos T , Imunoterapia , Imunoterapia Adotiva/efeitos adversos , Neoplasias/radioterapia , Neoplasias/etiologia , Neoplasias Hematológicas/etiologia , Linfócitos T
3.
Cell Mol Life Sci ; 80(1): 6, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36494469

RESUMO

PURPOSE: Oncogene addiction provides important therapeutic opportunities for precision oncology treatment strategies. To date the cellular circuitries associated with driving oncoproteins, which eventually establish the phenotypic manifestation of oncogene addiction, remain largely unexplored. Data suggest the DNA damage response (DDR) as a central signaling network that intersects with pathways associated with deregulated addicting oncoproteins with kinase activity in cancer cells. EXPERIMENTAL: DESIGN: We employed a targeted mass spectrometry approach to systematically explore alterations in 116 phosphosites related to oncogene signaling and its intersection with the DDR following inhibition of the addicting oncogene alone or in combination with irradiation in MET-, EGFR-, ALK- or BRAF (V600)-positive cancer models. An NSCLC tissue pipeline combining patient-derived xenografts (PDXs) and ex vivo patient organotypic cultures has been established for treatment responsiveness assessment. RESULTS: We identified an 'oncogene addiction phosphorylation signature' (OAPS) consisting of 8 protein phosphorylations (ACLY S455, IF4B S422, IF4G1 S1231, LIMA1 S490, MYCN S62, NCBP1 S22, P3C2A S259 and TERF2 S365) that are significantly suppressed upon targeted oncogene inhibition solely in addicted cell line models and patient tissues. We show that the OAPS is present in patient tissues and the OAPS-derived score strongly correlates with the ex vivo responses to targeted treatments. CONCLUSIONS: We propose a score derived from OAPS as a quantitative measure to evaluate oncogene addiction of cancer cell samples. This work underlines the importance of protein phosphorylation assessment for patient stratification in precision oncology and corresponding identification of tumor subtypes sensitive to inhibition of a particular oncogene.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Vício Oncogênico , Medicina de Precisão , Fosforilação , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Proteínas do Citoesqueleto
5.
Mol Cancer ; 17(1): 27, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29455660

RESUMO

Tumor metabolism is a thrilling discipline that focuses on mechanisms used by cancer cells to earn crucial building blocks and energy to preserve growth and overcome resistance to various treatment modalities. At the same time, therapies directed specifically against aberrant signalling pathways driven by protein tyrosine kinases (TKs) involved in proliferation, metastasis and growth count for several years to promising anti-cancer approaches. In this respect, small molecule inhibitors are the most widely used clinically relevant means for targeted therapy, with a rising number of approvals for TKs inhibitors. In this review, we discuss recent observations related to TKs-associated metabolism and to metabolic feedback that is initialized as cellular response to particular TK-targeted therapies. These observations provide collective evidence that therapeutic responses are primarily linked to such pathways as regulation of lipid and amino acid metabolism, TCA cycle and glycolysis, advocating therefore the development of further effective targeted therapies against a broader spectrum of TKs to treat patients whose tumors display deregulated signalling driven by these proteins.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Neoplasias/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
6.
Mol Cancer ; 16(1): 93, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28532501

RESUMO

BACKGROUND: The MET receptor tyrosine kinase represents a promising target in cancer. PIK3CA activating mutations are common in several tumor types and can potentially confer resistance to anti-receptor tyrosine kinase therapy. METHODS: MET and/or PI3K pathway inhibition was assessed in NIH3T3 cells harboring MET-activating point mutation with or without ectopic expression of PIK3CAE545K and PIK3CAH1047R, as well as in MET-expressing head and neck cancer cells with endogenous PIK3CA mutations. Endpoints included PI3K pathway activation, cell proliferation, colony-forming ability, cell death, wound-healing, and an in vivo model. RESULTS: PIK3CAE545K and PIK3CAH1047R confer resistance to MET inhibition in MET-driven models. PIK3CAH1047R was more potent than PIK3CAE545K at inducing resistance in PI3K pathway activation, cell proliferation, colony-forming ability, induction of cell death and wound-healing upon MET inhibition. Resistance to MET inhibition could be synergistically overcome by co-targeting PI3K. Furthermore, combined MET/PI3K inhibition led to enhanced anti-tumor activity in vivo in tumors harboring PIK3CAH1047R. In head and neck cancer cells the combination of MET/PI3K inhibitors led to more-than-additive effects. CONCLUSIONS: PIK3CA mutations can lead to resistance to MET inhibition, supporting future clinical evaluation of combinations of PI3K and MET inhibitors in common scenarios of malignant neoplasms featuring aberrant MET expression and PIK3CA mutations.


Assuntos
Mutação , Neoplasias/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Res Commun ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38957115

RESUMO

Various lines of investigation support a signaling interphase shared by receptor tyrosine kinases and the DNA damage response. However, the underlying network nodes and their contribution to the maintenance of DNA integrity remain unknown. We explored MET-related metabolic pathways whose interruption compromises proper resolution of DNA damage. Discovery metabolomics combined with transcriptomics identified changes in pathways relevant to DNA repair following MET inhibition (METi). METi by tepotinib was associated with formation of γH2AX foci and with significant alterations in major metabolic circuits such as glycolysis, gluconeogenesis, and purine, pyrimidine, amino acids, and lipids metabolism. 5'-Phosphoribosyl-N-formylglycinamide (FGAR), a de novo purine synthesis pathway metabolite, was consistently decreased in in vitro and in vivo MET-dependent models, and a METi-related depletion of dNTPs was observed. METi instigated the downregulation of critical purine synthesis enzymes including phosphoribosylglycinamide formyltransferase (GART) which catalyzes FGAR synthesis. Genes encoding these enzymes are regulated through E2F1, whose levels decrease upon METi in MET-driven cells and xenografts. Transient E2F1 overexpression prevented dNTPs depletion and the concomitant METi-associated DNA damage in MET-driven cells. We conclude that DNA damage following METi results from dNTPs reduction via downregulation of E2F1 and a consequent decline of de novo purine synthesis.

8.
Biochem Biophys Res Commun ; 431(2): 264-9, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23313490

RESUMO

MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.


Assuntos
Adenocarcinoma/enzimologia , Autofagia/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Neoplasias Gástricas/enzimologia , Adenina/análogos & derivados , Adenina/farmacologia , Autofagia/genética , Proteína 7 Relacionada à Autofagia , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Humanos , Indóis/farmacologia , Piridazinas/farmacologia , Pirimidinas/farmacologia , Sulfonas/farmacologia , Enzimas Ativadoras de Ubiquitina/genética
9.
Trends Cell Biol ; 33(1): 5-8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057494

RESUMO

Small proline-rich proteins (SPRRPs) are traditionally known for their function in keratinocyte homeostasis. Recent evidence demonstrates their involvement in additional diverse physiological processes ranging from p53 signaling and direct prevention of DNA damage to bactericidal activities. We highlight these novel, intriguing roles of SPRRPs and discuss them in the context of relevant pathological conditions.


Assuntos
Proteínas Ricas em Prolina do Estrato Córneo , Prolina , Humanos , Prolina/metabolismo , Proteínas Ricas em Prolina do Estrato Córneo/metabolismo , Proteínas/metabolismo , Queratinócitos , Biologia
10.
Oncogene ; 42(26): 2113-2125, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37188738

RESUMO

The DNA damage response (DDR) is intertwined with signaling pathways downstream of oncogenic receptor tyrosine kinases (RTKs). To drive research into the application of targeted therapies as radiosensitizers, a better understanding of this molecular crosstalk is necessary. We present here the characterization of a previously unreported MET RTK phosphosite, Serine 1016 (S1016) that represents a potential DDR-MET interface. MET S1016 phosphorylation increases in response to irradiation and is mainly targeted by DNA-dependent protein kinase (DNA-PK). Phosphoproteomics unveils an impact of the S1016A substitution on the overall long-term cell cycle regulation following DNA damage. Accordingly, the abrogation of this phosphosite strongly perturbs the phosphorylation of proteins involved in the cell cycle and formation of the mitotic spindle, enabling cells to bypass a G2 arrest upon irradiation and leading to the entry into mitosis despite compromised genome integrity. This results in the formation of abnormal mitotic spindles and a lower proliferation rate. Altogether, the current data uncover a novel signaling mechanism through which the DDR uses a growth factor receptor system for regulating and maintaining genome stability.


Assuntos
Proteína Quinase Ativada por DNA , Proteínas Serina-Treonina Quinases , Humanos , Proteínas de Ciclo Celular/genética , DNA/metabolismo , Dano ao DNA , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Mitose/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
11.
Nat Commun ; 14(1): 3342, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291246

RESUMO

Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Mutação , Oncogenes , Genômica
12.
Int J Cancer ; 130(3): 728-34, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21400509

RESUMO

Abnormal activation of cellular DNA repair pathways by deregulated signaling of receptor tyrosine kinase systems has broad implications for both cancer biology and treatment. Recent studies suggest a potential link between DNA repair and aberrant activation of the hepatocyte growth factor receptor Mesenchymal-Epithelial Transition (MET), an oncogene that is overexpressed in numerous types of human tumors and considered a prime target in clinical oncology. Using the homologous recombination (HR) direct-repeat direct-repeat green fluorescent protein ((DR)-GFP) system, we show that MET inhibition in tumor cells with deregulated MET activity by the small molecule PHA665752 significantly impairs in a dose-dependent manner HR. Using cells that express MET-mutated variants that respond differentially to PHA665752, we confirm that the observed HR inhibition is indeed MET-dependent. Furthermore, our data also suggest that decline in HR-dependent DNA repair activity is not a secondary effect due to cell cycle alterations caused by PHA665752. Mechanistically, we show that MET inhibition affects the formation of the RAD51-BRCA2 complex, which is crucial for error-free HR repair of double strand DNA lesions, presumably via downregulation and impaired translocation of RAD51 into the nucleus. Taken together, these findings assist to further support the role of MET in the cellular DNA damage response and highlight the potential future benefit of MET inhibitors for the sensitization of tumor cells to DNA damaging agents.


Assuntos
Antineoplásicos/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Indóis/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Reparo de DNA por Recombinação/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Proteína BRCA2/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Transformada , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mutação , Células NIH 3T3 , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/genética , Rad51 Recombinase/metabolismo
13.
Biomedicines ; 10(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552043

RESUMO

Background: Radiotherapy is a mainstay in head and neck squamous cell carcinoma (HNSCC) treatment but is mostly applied without stratification by molecular diagnostics. Development of reliable biomarkers may have the potential to improve radiotherapy (RT) efficacy and reduce toxicity. We conducted a systematic review to summarize the field of biomarkers in HNSCC treated by RT. Methods: Pubmed and EMBASE were searched independently by two researchers following pre-defined inclusion and exclusion criteria. Z curves were generated to investigate publication bias. OncoKB was used for identification of druggable targets. Results: 134 manuscripts remained for data extraction. 12% of tumors were AJCC/UICC stage I-II and 82% were stage III-IV. The most common biomarkers were proteins (39%), DNA (14%) and mRNA (9%). Limiting analysis to prospective data and statistically significant results, we found three potentially druggable targets: ERCC2, PTCH1 and EGFR. Regarding data quality, AJCC/UICC stage was missing in 32% of manuscripts. 73% of studies were retrospective and only 7% were based on prospective randomized trials. Z-curves indicated the presence of publication bias. Conclusion: An abundance of potential biomarkers in HNSCC is available but data quality is limited by retrospective collection, lack of validation and publication bias. Improved study design and reporting quality might accelerate successful development of personalized treatments in HNSCC.

14.
Cell Death Dis ; 12(4): 366, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824326

RESUMO

The toll-like receptor 5 (TLR5) agonist, CBLB502/Entolimod, is a peptide derived from bacterial flagellin and has been shown to protect against radiation-induced tissue damage in animal models. Here we investigated the protective mechanism of CBLB502 in the liver using models of ischemia-reperfusion injury and concanavalin A (ConA) induced immuno-hepatitis. We report that pretreatment of mice with CBLB502 provoked a concomitant activation of NF-κB and STAT3 signaling in the liver and reduced hepatic damage in both models. To understand the underlying mechanism, we screened for cytokines in the serum of CBLB502 treated animals and detected high levels of IL-22. There was no transcriptional upregulation of IL-22 in the liver, rather it was found in extrahepatic tissues, mainly the colon, mesenteric lymph nodes (MLN), and spleen. RNA-seq analysis on isolated hepatocytes demonstrated that the concomitant activation of NF-κB signaling by CBLB502 and STAT3 signaling by IL-22 produced a synergistic cytoprotective transcriptional signature. In IL-22 knockout mice, the loss of IL-22 resulted in a decrease of hepatic STAT3 activation, a reduction in the cytoprotective signature, and a loss of hepatoprotection following ischemia-reperfusion-induced liver injury. Taken together, these findings suggest that CBLB502 protects the liver by increasing hepatocyte resistance to acute liver injury through the cooperation of TLR5-NF-κB and IL-22-STAT3 signaling pathways.


Assuntos
Hepatócitos/efeitos dos fármacos , Interleucinas/metabolismo , Fígado/lesões , Peptídeos/farmacologia , Receptor 5 Toll-Like/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Interleucina 22
15.
Biochim Biophys Acta ; 1793(10): 1597-603, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19682504

RESUMO

N-myc downstream-regulated gene 1 (NRDG1) is a stress-induced protein whose putative function is suppression of tumor metastasis. A recent proteonomic study showed NDRG1 interacts with the molecular chaperone heat shock protein 90 (Hsp90). From their reported association, we investigated if NDRG1 is dependent on Hsp90 for its stability and is therefore a yet unidentified Hsp90 client protein. Here, we demonstrate that endogenous NDRG1 and Hsp90 physically associate in hepatocellular cancer cell lines. However, geldanamycin (GA)-mediated inhibition of Hsp90 did not disrupt their interaction or result in NDRG1 protein destabilization. On the contrary, inhibition of Hsp90 led to a transcriptional increase of NDRG1 protein which was associated with cell growth arrest. We also observed that GA inhibited the phosphorylation of NDRG1 by targeting its regulating kinases, serum- and glucocorticoid-induced kinase 1 (SGK1) and glycogen synthase kinase 3 beta (GSK3beta). We demonstrate that in the presence of GA, GSK3beta protein and activity were decreased thus indicating that Hsp90 is necessary for GSK3beta stability. Taken together, our data demonstrate that NDRG1 is not a classic client protein but interacts with Hsp90 and is still dually regulated by Hsp90 at a transcriptional and post-translational level. Finally, we suggest for the first time GSK3beta as a new client protein of Hsp90.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Benzoquinonas/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Estabilidade Enzimática/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lactamas Macrocíclicas/farmacologia , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Células U937
16.
Oncogene ; 39(14): 2845-2862, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32034310

RESUMO

MET, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, is a proto-oncogene involved in embryonic development and throughout life in homeostasis and tissue regeneration. Deregulation of MET signaling has been reported in numerous malignancies, prompting great interest in MET targeting for cancer therapy. The present review offers a summary of the biology of MET and its known functions in normal physiology and carcinogenesis, followed by an overview of the most relevant MET-targeting strategies and corresponding clinical trials, highlighting both past setbacks and promising future prospects. By placing their efforts on a more precise stratification strategy through the genetic analysis of tumors, modern trials such as the NCI-MATCH trial could revive the past enthusiasm for MET-targeted therapy.


Assuntos
Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Carcinogênese/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Neoplasias/metabolismo , Proto-Oncogene Mas , Transdução de Sinais/fisiologia
17.
Pharmacol Ther ; 215: 107617, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32610116

RESUMO

The DNA-PK holoenzyme is a fundamental element of the DNA damage response machinery (DDR), which is responsible for cellular genomic stability. Consequently, and predictably, over the last decades since its identification and characterization, numerous pre-clinical and clinical studies reported observations correlating aberrant DNA-PK status and activity with cancer onset, progression and responses to therapeutic modalities. Notably, various studies have established in recent years the role of DNA-PK outside the DDR network, corroborating its role as a pleiotropic complex involved in transcriptional programs that operate biologic processes as epithelial to mesenchymal transition (EMT), hypoxia, metabolism, nuclear receptors signaling and inflammatory responses. In particular tumor entities as prostate cancer, immense research efforts assisted mapping and describing the overall signaling networks regulated by DNA-PK that control metastasis and tumor progression. Correspondingly, DNA-PK emerges as an obvious therapeutic target in cancer and data pertaining to various pharmacological approaches have been published, largely in context of combination with DNA-damaging agents (DDAs) that act by inflicting DNA double strand breaks (DSBs). Currently, new generation inhibitors are tested in clinical trials. Several excellent reviews have been published in recent years covering the biology of DNA-PK and its role in cancer. In the current article we are aiming to systematically describe the main findings on DNA-PK signaling in major cancer types, focusing on both preclinical and clinical reports and present a detailed current status of the DNA-PK inhibitors repertoire.


Assuntos
Antineoplásicos/farmacologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/metabolismo , Progressão da Doença , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias/genética , Transdução de Sinais
18.
Mol Oncol ; 14(6): 1185-1206, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32336009

RESUMO

Increasing evidence suggests that interference with growth factor receptor tyrosine kinase (RTK) signaling can affect DNA damage response (DDR) networks, with a consequent impact on cellular responses to DNA-damaging agents widely used in cancer treatment. In that respect, the MET RTK is deregulated in abundance and/or activity in a variety of human tumors. Using two proteomic techniques, we explored how disrupting MET signaling modulates global cellular phosphorylation response to ionizing radiation (IR). Following an immunoaffinity-based phosphoproteomic discovery survey, we selected candidate phosphorylation sites for extensive characterization by targeted proteomics focusing on phosphorylation sites in both signaling networks. Several substrates of the DDR were confirmed to be modulated by sequential MET inhibition and IR, or MET inhibition alone. Upon combined treatment, for two substrates, NUMA1 S395 and CHEK1 S345, the gain and loss of phosphorylation, respectively, were recapitulated using invivo tumor models by immunohistochemistry, with possible utility in future translational research. Overall, we have corroborated phosphorylation sites at the intersection between MET and the DDR signaling networks, and suggest that these represent a class of proteins at the interface between oncogene-driven proliferation and genomic stability.


Assuntos
Dano ao DNA , Epitélio/patologia , Mesoderma/patologia , Fosfoproteínas/metabolismo , Proteômica , Animais , Linhagem Celular Tumoral , Reparo do DNA/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Epitélio/efeitos da radiação , Feminino , Humanos , Mesoderma/efeitos da radiação , Camundongos , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos da radiação , Radiação Ionizante , Reprodutibilidade dos Testes , Especificidade por Substrato/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Cancer Ther ; 19(2): 614-626, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31744898

RESUMO

Radiotherapy (RT) along with surgery is the mainstay of treatment in head and neck squamous cell carcinoma (HNSCC). Radioresistance represents a major source of treatment failure, underlining the urgent necessity to explore and implement effective radiosensitization strategies. The MET receptor widely participates in the acquisition and maintenance of an aggressive phenotype in HNSCC and modulates the DNA damage response following ionizing radiation (IR). Here, we assessed MET expression and mutation status in primary and metastatic lesions within a cohort of patients with advanced HNSCC. Moreover, we investigated the radiosensitization potential of the MET inhibitor tepotinib in a panel of cell lines, in vitro and in vivo, as well as in ex vivo patient-derived organotypic tissue cultures (OTC). MET was highly expressed in 62.4% of primary tumors and in 53.6% of lymph node metastases (LNM), and in 6 of 9 evaluated cell lines. MET expression in primaries and LNMs was significantly associated with decreased disease control in univariate survival analyses. Tepotinib abrogated MET phosphorylation and to distinct extent MET downstream signaling. Pretreatment with tepotinib resulted in variable radiosensitization, enhanced DNA damage, cell death, and G2-M-phase arrest. Combination of tepotinib with IR led to significant radiosensitization in one of two tested in vivo models. OTCs revealed differential patterns of response toward tepotinib, irradiation, and combination of both modalities. The molecular basis of tepotinib-mediated radiosensitization was studied by a CyTOF-based single-cell mass cytometry approach, which uncovered that MET inhibition modulated PI3K activity in cells radiosensitized by tepotinib but not in the resistant ones.


Assuntos
Inibidores de Proteínas Quinases/uso terapêutico , Radiossensibilizantes/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Front Oncol ; 9: 1088, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681616

RESUMO

In human cells, three closely related RAS genes, termed HRAS, KRAS, and NRAS, encode four highly homologous proteins. RAS proteins are small GTPases involved in a broad spectrum of key molecular and cellular activities, including proliferation and survival among others. Gain-of-function missense mutations, mostly located at codons 12, 13, and 61, constitutively activate RAS proteins and can be detected in various types of human cancers. KRAS is the most frequently mutated, followed by NRAS and HRAS. However, each isoform exhibits distinctive mutation frequency at each codon, supporting the hypothesis that different RAS mutants may lead to distinct biologic manifestations. This review is focused on the differences in signaling and phenotype, as well as on transcriptomics, proteomics, and metabolomics profiles related to individual RAS-mutated variants. Additionally, association of these mutants with particular targeted outcomes and rare mutations at additional RAS codons are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA