Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(38): e2310914120, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695903

RESUMO

Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome (ca. 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.


Assuntos
Vesículas Extracelulares , Transdução de Sinais , Humanos , Transporte Biológico , Comunicação Celular , Divisão Celular , Sindecanas , Fatores de Transcrição
2.
Proc Natl Acad Sci U S A ; 117(11): 5913-5922, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32108028

RESUMO

Exosomes, extracellular vesicles (EVs) of endosomal origin, emerge as master regulators of cell-to-cell signaling in physiology and disease. Exosomes are highly enriched in tetraspanins (TSPNs) and syndecans (SDCs), the latter occurring mainly in proteolytically cleaved form, as membrane-spanning C-terminal fragments of the proteins. While both protein families are membrane scaffolds appreciated for their role in exosome formation, composition, and activity, we currently ignore whether these work together to control exosome biology. Here we show that TSPN6, a poorly characterized tetraspanin, acts as a negative regulator of exosome release, supporting the lysosomal degradation of SDC4 and syntenin. We demonstrate that TSPN6 tightly associates with SDC4, the SDC4-TSPN6 association dictating the association of TSPN6 with syntenin and the TSPN6-dependent lysosomal degradation of SDC4-syntenin. TSPN6 also inhibits the shedding of the SDC4 ectodomain, mimicking the effects of matrix metalloproteinase inhibitors. Taken together, our data identify TSPN6 as a regulator of the trafficking and processing of SDC4 and highlight an important physical and functional interconnection between these membrane scaffolds for the production of exosomes. These findings clarify our understanding of the molecular determinants governing EV formation and have potentially broad impact for EV-related biomedicine.


Assuntos
Exossomos/metabolismo , Sinteninas/metabolismo , Tetraspaninas/metabolismo , Comunicação Celular , Exossomos/genética , Vesículas Extracelulares/metabolismo , Humanos , Lisossomos/metabolismo , Células MCF-7 , Metaloproteinases da Matriz/metabolismo , Transporte Proteico , Sindecana-4/metabolismo , Sindecanas/metabolismo
3.
Handb Exp Pharmacol ; 259: 309-336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31087193

RESUMO

Extracellular vesicles (EVs), and exosomes in particular, were initially considered as "garbage bags" for secretion of undesired cellular components. This view has changed considerably over the last two decades, and exosomes have now emerged as important organelles controlling cell-to-cell signaling. They are present in biological fluids and have important roles in the communication between cells in physiological and pathological processes. They are envisioned for clinical use as carriers of biomarkers, therapeutic targets, and vehicles for drug delivery. Important efforts are being made to characterize the contents of these vesicles and to understand the mechanisms that govern their biogenesis and modes of action. This chapter aims to recapitulate the place given to lipids in our understanding of exosome biology. Besides their structural role and their function as carriers, certain lipids and lipid-modifying enzymes seem to exert privileged functions in this mode of cellular communication. By extension, the use of selective "lipid inhibitors" might turn out to be interesting modulators of exosomal-based cell signaling.


Assuntos
Exossomos , Lipídeos/química , Comunicação Celular , Sistemas de Liberação de Medicamentos , Humanos , Transdução de Sinais
4.
Adv Exp Med Biol ; 1221: 285-307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274714

RESUMO

Exosomes are secreted vesicles involved in signaling processes. The biogenesis of a class of these extracellular vesicles depends on syntenin, and on the interaction of this cytosolic protein with syndecans. Heparanase, largely an endosomal enzyme, acts as a regulator of the syndecan-syntenin-exosome biogenesis pathway. The upregulation of syntenin and heparanase in cancers may support the suspected roles of exosomes in tumor biology.


Assuntos
Exossomos/metabolismo , Glucuronidase/metabolismo , Humanos , Sindecanas , Sinteninas
5.
Proc Natl Acad Sci U S A ; 114(47): 12495-12500, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29109268

RESUMO

The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin-syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell-cell communication, supported by syntenin exosomes, which is likely to contribute to tumor-host interactions.


Assuntos
Comunicação Celular/genética , Exossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Proteína Oncogênica pp60(v-src)/genética , Sinteninas/genética , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Motivos de Aminoácidos , Movimento Celular , Proliferação de Células , Meios de Cultivo Condicionados/farmacologia , Endocitose , Endossomos/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células MCF-7 , Proteína Oncogênica pp60(v-src)/metabolismo , Fosfolipase D/genética , Fosfolipase D/metabolismo , Fosforilação , Transdução de Sinais , Sindecanas/genética , Sindecanas/metabolismo , Sinteninas/metabolismo
6.
J Lipid Res ; 59(9): 1554-1560, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29853529

RESUMO

Extracellular vesicles released by viable cells (exosomes and microvesicles) have emerged as important organelles supporting cell-cell communication. Because of their potential therapeutic significance, important efforts are being made toward characterizing the contents of these vesicles and the mechanisms that govern their biogenesis. It has been recently demonstrated that the lipid modifying enzyme, phospholipase D (PLD)2, is involved in exosome production and acts downstream of the small GTPase, ARF6. This review aims to recapitulate our current knowledge of the role of PLD2 and its product, phosphatidic acid, in the biogenesis of exosomes and to propose hypotheses for further investigation of a possible central role of these molecules in the biology of these organelles.


Assuntos
Vesículas Extracelulares/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Animais , Exossomos/metabolismo , Humanos , Transdução de Sinais
7.
Biol Cell ; 107(10): 331-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26032692

RESUMO

Cells communicate with their environment in various ways, including by secreting vesicles. Secreted vesicles are loaded with proteins, lipids and RNAs that compose 'a signature' of the cell of origin and potentially can reprogram recipient cells. Secreted vesicles recently gained in interest for medicine. They represent potential sources of biomarkers that can be collected from body fluids and, by disseminating pathogenic proteins, might also participate in systemic diseases like cancer, atherosclerosis and neurodegeneration. The mechanisms controlling the biogenesis and the uptake of secreted vesicles are poorly understood. Some of these vesicles originate from endosomes and are called 'exosomes'. In this review, we recapitulate recent insight on the role of the syndecan (SDC) heparan sulphate proteoglycans, the small intracellular adaptor syntenin and associated regulators in the biogenesis and loading of exosomes with cargo. SDC-syntenin-associated regulators include the endosomal sorting complex required for transport accessory component ALG-2-interacting protein X, the small GTPase adenosine 5'-diphosphate-ribosylation factor 6, the lipid-modifying enzyme phospholipase D2 and the endoglycosidase heparanase. All these molecules appear to support the budding of SDC-syntenin and associated cargo into the lumen of endosomes. This highlights a major mechanism for the formation of intraluminal vesicles that will be released as exosomes.


Assuntos
Exossomos/metabolismo , Sindecanas/metabolismo , Sinteninas/metabolismo , Animais , Humanos
8.
Cell Mol Life Sci ; 72(19): 3783-801, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25912030

RESUMO

Syndecan-1 is a heparan sulfate proteoglycan expressed by endothelial and epithelial cells and involved in wound healing and tumor growth. Surface-expressed syndecan-1 undergoes proteolytic shedding leading to the release of the soluble N-terminal ectodomain from a transmembrane C-terminal fragment (tCTF). We show that the disintegrin and metalloproteinase (ADAM) 17 generates a syndecan-1 tCTF, which can then undergo further intra-membrane proteolysis by γ-secretase. Scratch-induced wound closure of cultured lung epithelial A549 tumor cells associates with increased syndecan-1 cleavage as evidenced by the release of shed syndecan-1 ectodomain and enhanced generation of the tCTF. Both wound closure and the associated syndecan-1 shedding can be suppressed by inhibition of ADAM family proteases. Cell proliferation, migration and invasion into matrigel as well as several signaling pathways implicated in these responses are suppressed by silencing of syndecan-1. These defects of syndecan-1 deficient cells can be overcome by overexpression of syndecan-1 tCTF or a corresponding tCTF of syndecan-4 but not by overexpression of a tCTF lacking the transmembrane domain. Finally, lung metastasis formation of A549 cells in SCID mice was found to be dependent on syndecan-1, and the presence of syndecan-1 tCTF was sufficient for this activity. Thus, the syndecan-1 tCTF by itself is capable of mediating critical syndecan-1-dependent functions in cell proliferation, migration, invasion and metastasis formation and therefore can replace full length syndecan-1 in the situation of increased syndecan-1 shedding during cell migration and tumor formation.


Assuntos
Proteínas ADAM/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Neoplasias Pulmonares/secundário , Pulmão/citologia , Transdução de Sinais/fisiologia , Sindecana-1/metabolismo , Proteína ADAM17 , Animais , Western Blotting , Primers do DNA/genética , Citometria de Fluxo , Células HEK293 , Humanos , Immunoblotting , Camundongos , Camundongos SCID , Reação em Cadeia da Polimerase , Estatísticas não Paramétricas , Sindecana-1/química
9.
J Cell Sci ; 125(Pt 5): 1129-40, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22399807

RESUMO

Epiboly, the spreading and the thinning of the blastoderm to cover the yolk cell and close the blastopore in fish embryos, is central to the process of gastrulation. Despite its fundamental importance, little is known about the molecular mechanisms that control this coordinated cell movement. By a combination of knockdown studies and rescue experiments in zebrafish (Danio rerio), we show that epiboly relies on the molecular networking of syntenin with syndecan heparan sulphate proteoglycans, which act as co-receptors for adhesion molecules and growth factors. Furthermore, we show that the interaction of syntenin with phosphatidylinositol 4,5-bisphosphate (PIP2) and with the small GTPase ADP-ribosylation factor 6 (Arf6), which regulate the endocytic recycling of syndecan, is necessary for epiboly progression. Analysis of the earliest cellular defects suggests a role for syntenin in the autonomous vegetal expansion of the yolk syncytial layer and the rearrangement of the actin cytoskeleton in extra-embryonic tissues, but not in embryonic cell fate determination. This study identifies the importance of the syntenin-syndecan-PIP2-Arf6 complex for the progression of fish epiboly and establishes its key role in directional cell movements during early development.


Assuntos
Gastrulação/fisiologia , Sindecanas/metabolismo , Sinteninas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Movimento Celular/fisiologia , Citoesqueleto/genética , Técnicas de Silenciamento de Genes , Camundongos , Dados de Sequência Molecular , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sinteninas/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
10.
Development ; 138(8): 1595-605, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21389050

RESUMO

The spatiotemporal integration of adhesion and signaling during neuritogenesis is an important prerequisite for the establishment of neuronal networks in the developing brain. In this study, we describe the role of the L1-type CAM Neuroglian protein (NRG) in different steps of Drosophila mushroom body (MB) neuron axonogenesis. Selective axon bundling in the peduncle requires both the extracellular and the intracellular domain of NRG. We uncover a novel role for the ZO-1 homolog Polychaetoid (PYD) in axon branching and in sister branch outgrowth and guidance downstream of the neuron-specific isoform NRG-180. Furthermore, genetic analyses show that the role of NRG in different aspects of MB axonal development not only involves PYD, but also TRIO, SEMA-1A and RAC1.


Assuntos
Axônios/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Drosophila/metabolismo , Corpos Pedunculados/citologia , Corpos Pedunculados/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Animais , Axônios/fisiologia , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Drosophila , Proteínas de Drosophila/genética , Feminino , Imuno-Histoquímica , Masculino , Molécula L1 de Adesão de Célula Nervosa/genética , Organogênese/genética , Organogênese/fisiologia , Reação em Cadeia da Polimerase , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
Cytometry A ; 83(9): 866-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23300061

RESUMO

Cellular signaling is largely dependent on the presence, that is, assembly/disassembly, of supramolecular complexes. Postsynaptic density protein, Discs-large, Zona occludens (PDZ) domains play important roles in the assembly of various signaling complexes. Syntenin-2 (S2) is a PDZ protein that interacts with nuclear phosphatidylinositol 4,5-bisphosphate (PIP2 ). Although nuclear lipids emerge as key players in nuclear processes, the global significance of nuclear phosphoinositide-protein interactions is still poorly understood. Those phosphoinositide-protein interactions that have been studied in detail appear to have profound physiological effects. To our knowledge none of these were investigated by dynamic studies such as Fluorescence Correlation Spectroscopy (FCS), Fluorescence Cross-Correlation Spectroscopy (FCCS), or Fluorescence Recovery After Photobleaching (FRAP). Although the exact function of S2 is unknown, siRNA experiments suggest that this PDZ protein plays a role in the organization of nuclear PIP2 , cell division, and cell survival. As a consequence of its PIP2 interaction, its reported self-association in a yeast two-hybrid study and its speculated interaction with many, yet unidentified, proteins one can hypothesize that S2 plays an important role in cell signaling. Therefore, we studied the dynamics of S2 using FCS, FCCS, and FRAP, utilizing an active truncated form deleted for the first 94 amino acids (S2-ΔN). We showed that S2-ΔN self-associates and is distributed in three groups. One immobile group, one slow diffusing group, which interacts with the nuclear environment and one fast diffusing group, which is not incorporated in high molecular weight complexes. In addition, our FCS and FRAP measurements on S2-ΔN mutants affected in their PIP2 binding showed that PIP2 plays an important role in the distribution of S2-ΔN among these groups, and favors the enrichment of S2-ΔN in the slow diffusing and immobile group. This work indicates that S2 relies on nuclear PIP2 to interact with practically immobile structures, possibly chromatin.


Assuntos
Domínios PDZ , Fosfoinositídeo Fosfolipase C/metabolismo , Sinteninas/metabolismo , Proteínas da Zônula de Oclusão/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Nucléolo Celular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Células MCF-7 , Microscopia de Fluorescência , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Espectrometria de Fluorescência/métodos
12.
Adv Exp Med Biol ; 991: 41-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23775690

RESUMO

The discovery that PSD-95/Discs large/ZO-1 (PDZ) domains can function as lipid-binding modules, in particular interacting with phosphoinositides (PIs), was made more than 10 years ago (Mol Cell 9(6): 1215-1225, 2002). Confirmatory studies and a series of functional follow-ups established PDZ domains as dual specificity modules displaying both peptide and lipid binding, and prompted a rethinking of the mode of action of PDZ domains in the control of cell signaling. In this chapter, after introducing PDZ domains, PIs and methods for studying protein-lipid interactions, we focus on (i) the prevalence and the specificity of PDZ-PIs interactions, (ii) the molecular determinants of PDZ-PIs interactions, (iii) the integration of lipid and peptide binding by PDZ domains, (iv) the common features of PIs interacting PDZ domains and (v) the regulation and functional significance of PDZ-PIs interactions.


Assuntos
Domínios PDZ/fisiologia , Fosfatidilinositóis/química , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Proteínas Musculares/química , Proteínas Musculares/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/fisiologia , Fosfatidilinositóis/fisiologia , Sinteninas/química , Sinteninas/fisiologia , Proteína da Zônula de Oclusão-1/química , Proteína da Zônula de Oclusão-1/fisiologia
13.
Membranes (Basel) ; 13(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37623798

RESUMO

PSD95-disc large-zonula occludens (PDZ) domains are globular modules of 80-90 amino acids that co-evolved with multicellularity. They commonly bind to carboxy-terminal sequences of a plethora of membrane-associated proteins and influence their trafficking and signaling. We previously built a PDZ resource (PDZome) allowing us to unveil human PDZ interactions by Yeast two-hybrid. Yet, this resource is incomplete according to the current knowledge on the human PDZ proteome. Here we built the PDZome 2.0 library for Yeast two-hybrid, based on a PDZ library manually curated from online resources. The PDZome2.0 contains 305 individual clones (266 PDZ domains in isolation and 39 tandems), for which all boundaries were designed based on available PDZ structures. Using as bait the E6 oncoprotein from HPV16, a known promiscuous PDZ interactor, we show that PDZome 2.0 outperforms the previous resource.

14.
J Extracell Vesicles ; 12(8): e12352, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37525398

RESUMO

The tetraspanins CD9, CD81 and CD63 are major components of extracellular vesicles (EVs). Yet, their impact on EV composition remains under-investigated. In the MCF7 breast cancer cell line CD63 was as expected predominantly intracellular. In contrast CD9 and CD81 strongly colocalized at the plasma membrane, albeit with different ratios at different sites, which may explain a higher enrichment of CD81 in EVs. Absence of these tetraspanins had little impact on the EV protein composition as analysed by quantitative mass spectrometry. We also analysed the effect of concomitant knock-out of CD9 and CD81 because these two tetraspanins play similar roles in several cellular processes and associate directly with two Ig domain proteins, CD9P-1/EWI-F/PTGFRN and EWI-2/IGSF8. These were the sole proteins significantly decreased in the EVs of double CD9- and CD81-deficient cells. In the case of EWI-2, this is primarily a consequence of a decreased cell expression level. In conclusion, this study shows that CD9, CD81 and CD63, commonly used as EV protein markers, play a marginal role in determining the protein composition of EVs released by MCF7 cells and highlights a regulation of the expression level and/or trafficking of CD9P-1 and EWI-2 by CD9 and CD81.


Assuntos
Vesículas Extracelulares , Tetraspanina 28 , Tetraspanina 29 , Tetraspanina 30 , Movimento Celular , Vesículas Extracelulares/metabolismo , Proteômica , Tetraspanina 28/metabolismo , Humanos , Células MCF-7 , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo
15.
J Med Chem ; 66(7): 4633-4658, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36939673

RESUMO

The rapid identification of early hits by fragment-based approaches and subsequent hit-to-lead optimization represents a challenge for drug discovery. To address this challenge, we created a strategy called "DOTS" that combines molecular dynamic simulations, computer-based library design (chemoDOTS) with encoded medicinal chemistry reactions, constrained docking, and automated compound evaluation. To validate its utility, we applied our DOTS strategy to the challenging target syntenin, a PDZ domain containing protein and oncology target. Herein, we describe the creation of a "best-in-class" sub-micromolar small molecule inhibitor for the second PDZ domain of syntenin validated in cancer cell assays. Key to the success of our DOTS approach was the integration of protein conformational sampling during hit identification stage and the synthetic feasibility ranking of the designed compounds throughout the optimization process. This approach can be broadly applied to other protein targets with known 3D structures to rapidly identify and optimize compounds as chemical probes and therapeutic candidates.


Assuntos
Domínios PDZ , Sinteninas , Descoberta de Drogas , Sindecanas/metabolismo
16.
EMBO Mol Med ; 15(11): e17570, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37819151

RESUMO

The crosstalk between cancer and stromal cells plays a critical role in tumor progression. Syntenin is a small scaffold protein involved in the regulation of intercellular communication that is emerging as a target for cancer therapy. Here, we show that certain aggressive forms of acute myeloid leukemia (AML) reduce the expression of syntenin in bone marrow stromal cells (BMSC). Stromal syntenin deficiency, in turn, generates a pro-tumoral microenvironment. From serial transplantations in mice and co-culture experiments, we conclude that syntenin-deficient BMSC stimulate AML aggressiveness by promoting AML cell survival and protein synthesis. This pro-tumoral activity is supported by increased expression of endoglin, a classical marker of BMSC, which in trans stimulates AML translational activity. In short, our study reveals a vicious signaling loop potentially at the heart of AML-stroma crosstalk and unsuspected tumor-suppressive effects of syntenin that need to be considered during systemic targeting of syntenin in cancer therapy.


Assuntos
Leucemia Mieloide Aguda , Sinteninas , Animais , Camundongos , Sinteninas/genética , Sinteninas/metabolismo , Regulação para Baixo , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais , Células Estromais/metabolismo , Microambiente Tumoral
17.
J Biol Chem ; 286(52): 44669-78, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22033935

RESUMO

PDZ domains are well known protein-protein interaction modules that, as part of multidomain proteins, assemble molecular complexes. Some PDZ domains have been reported to interact with membrane lipids, in particular phosphatidylinositol phosphates, but few studies have been aimed at elucidating the prevalence or the molecular details of such interactions. We screened 46 Drosophila PDZ domains for phosphoinositide-dependent cellular localization and discovered that the second PDZ domain of polychaetoid (Pyd PDZ2) interacts with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) at the plasma membrane. Surface plasmon resonance binding experiments with recombinant protein established that Pyd PDZ2 interacts with phosphatidylinositol phosphates with apparent affinities in the micromolar range. Electrostatic interactions involving an extended positively charged surface of Pyd PDZ2 are crucial for the PtdIns(4,5)P(2)-dependent membrane interactions as shown by a combination of three-dimensional modeling, mutagenesis, binding, and localization studies. In vivo localization studies further suggested that both lipid and peptide binding contribute to membrane localization. We identified the transmembrane protein Crumbs as a Pyd PDZ2 ligand and probed the relation between peptide and PtdIns(4,5)P(2) binding. Contrary to the prevalent view on PDZ/peptide/lipid binding, we did not find competition between peptide and lipid ligands. Instead, preloading the protein with the 10-mer Crb3 peptide increased the apparent affinity of Pyd PDZ2 for PtdIns(4,5)P(2) 6-fold. Our results suggest that membrane localization of Pyd PDZ2 may be driven by a combination of peptide and PtdIns(4,5)P(2) binding, which raises the intriguing possibility that the domain may coordinate protein- and phospholipid-mediated signals.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Drosophila , Drosophila melanogaster , Humanos , Proteínas de Membrana/genética , Domínios PDZ , Peptídeos/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfoproteínas/genética , Ligação Proteica , Transdução de Sinais/fisiologia , Proteínas de Junções Íntimas , Proteína da Zônula de Oclusão-1
18.
Front Cell Dev Biol ; 10: 886381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669514

RESUMO

Matrix metalloproteinases (MMPs) are key players in matrix remodeling and their function has been particularly investigated in cancer biology. Indeed, through extracellular matrix (ECM) degradation and shedding of diverse cell surface macromolecules, they are implicated in different steps of tumor development, from local expansion by growth to tissue invasion and metastasis. Interestingly, MMPs are also components of extracellular vesicles (EVs). EVs are membrane-limited organelles that cells release in their extracellular environment. These "secreted" vesicles are now well accepted players in cell-to-cell communication. EVs have received a lot of interest in recent years as they are also envisioned as sources of biomarkers and as potentially outperforming vehicles for the delivery of therapeutics. Molecular machineries governing EV biogenesis, cargo loading and delivery to recipient cells are complex and still under intense investigation. In this review, we will summarize the state of the art of our knowledge about the molecular mechanisms implicated in MMP trafficking and secretion. We focus on MT1-MMP, a major effector of invasive cell behavior. We will also discuss how this knowledge is of interest for a better understanding of EV-loading of MMPs. Such knowledge might be of use to engineer novel strategies for cancer treatment. A better understanding of these mechanisms could also be used to design more efficient EV-based therapies.

19.
FASEB J ; 24(11): 4378-95, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20634352

RESUMO

Connexin-assembled gap junctions (GJs) and hemichannels coordinate intercellular signaling processes. Although the regulation of connexins in GJs has been well characterized, the molecular determinants controlling connexin-hemichannel activity are unresolved. Here we investigated the regulation of Cx43-hemichannel activity by actomyosin contractility and intracellular [Ca(2+)] ([Ca(2+)](i)) using plasma membrane-permeable TAT peptides (100 µM) designed to interfere with interactions between the cytoplasmic loop (CL) and carboxy-terminal (CT) in primary bovine corneal endothelial cells and HeLa, C6 glioma, and Xenopus oocytes ectopically expressing Cx43. Peptides corresponding to the last 10 CT aa (TAT-Cx43CT) prevented the inhibition of Cx43-hemichannel activity by contractility/high [Ca(2+)](i), whereas a reverse peptide (TAT-Cx43CTrev) did not. These effects were independent of zonula occludens-1, a cytoskeletal-associated Cx43-binding protein. In contrast, peptides corresponding to CL (TAT-L2) inhibited Cx43-hemichannel responses, whereas a mutant peptide (TAT-L2(H126K/I130N)) did not inhibit. In these assays, TAT-Cx43CT acted as a scaffold for TAT-L2 and vice versa, a finding supported by surface plasmon resonance measurements. Loop/tail interactions appeared essential for Cx43-hemichannel activity, because TAT-Cx43CT restored the activity of nonfunctional hemichannels, consisting of either Cx43 lacking the C-terminal tail (Cx43(M239)) or intact Cx43 ectopically expressed in Xenopus oocytes. We conclude that intramolecular loop/tail interactions control Cx43-hemichannel activity, laying the basis for developing hemichannel-specific blockers.


Assuntos
Conexina 43/metabolismo , Canais Iônicos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Linhagem Celular , Linhagem Celular Tumoral , Córnea/citologia , Córnea/metabolismo , Células Endoteliais/metabolismo , Produtos do Gene tat/metabolismo , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Espaço Intracelular/metabolismo , Canais Iônicos/efeitos dos fármacos , Oócitos/metabolismo , Ligação Proteica , Ratos , Trombina/metabolismo , Xenopus laevis/metabolismo
20.
J Immunol ; 182(7): 3974-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19299694

RESUMO

Downstream of tyrosine kinase (Dok) proteins Dok-1 and Dok-2 are involved in T cell homeostasis maintenance. Dok protein tyrosine phosphorylation plays a key role in establishing negative feedback loops of T cell signaling. These structurally related adapter molecules contain a pleckstrin homology (PH) domain generally acting as a lipid/protein-interacting module. We show that the presence of this PH domain is necessary for the tyrosine phosphorylation of Dok proteins and their negative functions in T cells. We find that Dok-1/Dok-2 PH domains bind in vitro to the rare phosphoinositide species, phosphatidylinositol 5-phosphate (PtdIns5P). Dok tyrosine phosphorylation correlates with PtdIns5P production in T cells upon TCR triggering. Furthermore, we demonstrate that PtdIns5P increase regulates Dok tyrosine phosphorylation in vivo. Together, our data identify a novel lipid mediator in T cell signaling and suggest that PH-PtdIns5P interactions regulate T cell responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas de Ligação a DNA/imunologia , Ativação Linfocitária/imunologia , Fosfatos de Fosfatidilinositol/biossíntese , Fosfoproteínas/imunologia , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Células Jurkat , Fosfatos de Fosfatidilinositol/imunologia , Fosfoproteínas/metabolismo , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Ressonância de Plasmônio de Superfície , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA