Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769234

RESUMO

Pre-harvest sprouting is a critical phenomenon involving the germination of seeds in the mother plant before harvest under relative humid conditions and reduced dormancy. As it results in reduced grain yield and quality, it is a common problem for the farmers who have cultivated the rice and wheat across the globe. Crop yields need to be steadily increased to improve the people's ability to adapt to risks as the world's population grows and natural disasters become more frequent. To improve the quality of grain and to avoid pre-harvest sprouting, a clear understanding of the crops should be known with the use of molecular omics approaches. Meanwhile, pre-harvest sprouting is a complicated phenomenon, especially in rice, and physiological, hormonal, and genetic changes should be monitored, which can be modified by high-throughput metabolic engineering techniques. The integration of these data allows the creation of tailored breeding lines suitable for various demands and regions, and it is crucial for increasing the crop yields and economic benefits. In this review, we have provided an overview of seed dormancy and its regulation, the major causes of pre-harvest sprouting, and also unraveled the novel avenues to battle pre-harvest sprouting in cereals with special reference to rice using genomics and transcriptomic approaches.


Assuntos
Oryza , Melhoramento Vegetal , Dormência de Plantas/fisiologia , Oryza/genética , Oryza/crescimento & desenvolvimento
2.
J Environ Manage ; 292: 112758, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34030015

RESUMO

This paper presents a review of synthetic polymer (notably plastic) wastes profiles in Africa, their current management status, and better options. Data revealed that of the approximated 86.14 million metric tonnes and 31.5 million metric tonnes of primary polymers and plastics, respectively, and an estimated 230 million metric tonnes of plastic components imported between 1990 and 2017, about 17 million metric tonnes are mismanaged. Leading African nations on the plastic wastes generator table in increasing order are Tunisia (6.9%), Morocco (9.6%), Algeria (11.2%), South Africa (11.6%), Nigeria (16.9%), and the chief is Egypt (18.4%). The volume of plastic wastes generated in Africa directly correlates with her increasing population status, however, the current treatment options have major drawbacks (high energy and technological input, high demand for space, and creation of obnoxious by-products). Ineffective regulations, poor monitoring, and slow adoption of veritable practices by governments are responsible for the steady increase in plastic volume in the African landscapes and environments. In Nigeria, only about 9% and 12% of the total generated wastes are recycled and incinerated. The remainder bulk is either discarded into waste dumps (and a few available landfills) or natural environments. There is a paucity of standard plastic biodegradative work by African scientists, and only a few works show detection of competent synthetic plastic degrading microbes globally. Asides from the ills of possible omission of core degraders, there is a need for researchers to follow standard degradation procedures to arrive at efficient, reproducible, and generally accepted outcomes utilizable on a larger scale. Thus, metagenomic search on the vast African urban and rural plastisphere is the best isolation option.


Assuntos
Plásticos , Gerenciamento de Resíduos , Egito , Marrocos , Nigéria , África do Sul , Tunísia
3.
ScientificWorldJournal ; 2019: 1252653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360125

RESUMO

Pearl millet is a dominant staple cereal crop for smallholder farmers in Senegal. However, the crop is constrained by various nonbiotic and biotic stresses such as downy mildew disease. To assess the prevalence of this disease in Senegal, a field survey was conducted during the rainy season of 2017 across eight main pearl millet production regions following latitudinal gradient with different climatic conditions. Results showed that downy mildew prevalence was higher in Kaolack (incidence = 68.19%), Kaffrine (incidence = 77.19%), Tambacounda (incidence = 97.03%), Sedhiou (incidence = 82.78%), and Kolda (incidence = 98.01%) than Thies (incidence = 28.21%), Diourbel (incidence = 24.46%), and Fatick (incidence = 37.75%) regions. The field survey revealed an incidence as high as 98% and 28% of infected area in surveyed fields. Significant correlations between geographic coordinates, disease incidence, and infected areas were also observed. This study provided information that could help to understand the prevalence of downy mildew in pearl millet in Senegal.


Assuntos
Agricultura , Oomicetos/fisiologia , Pennisetum/microbiologia , Doenças das Plantas/microbiologia , Clima , Geografia , Umidade , Prevalência , Chuva , Estações do Ano , Senegal , Temperatura
4.
Plant Genome ; 17(2): e20428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234122

RESUMO

Microsatellite markers are widely used in population genetics and breeding. Despite the economic significance of yams in developing countries, there is a paucity of microsatellite markers, and as of now, no comprehensive microsatellite marker database exists. In this study, we conducted genome-wide microsatellite marker development across four yam species, identified cross-species transferable markers, and designed an easy-to-use web portal for the yam researchers. The screening of Dioscorea alata, Dioscorea rotundata, Dioscorea dumetorum, and Dioscorea zingiberensis genomes resulted in 318,713, 322,501, 307,040, and 253,856 microsatellites, respectively. Mono-, di-, and tri-nucleotides were the most important types of repeats in the different species, and a total of 864,128 primer pairs were designed. Furthermore, we identified 1170 cross-species transferable microsatellite markers. Among them, 17 out of 18 randomly selected were experimentally validated with good discriminatory power, regardless of the species and ploidy levels. Ultimately, we created and deployed a dynamic Yam Microsatellite Markers Database (Y2MD) available at https://y2md.ucad.sn/. Y2MD is embedded with various useful tools such as JBrowse, Blast, insilicoPCR, and SSR Finder to facilitate the exploitation of microsatellite markers in yams. This study represents the first comprehensive microsatellite marker mining across several yam species and will contribute to advancing yam genetic research and marker-assisted breeding. The released user-friendly database constitutes a valuable platform for yam researchers.


Assuntos
Dioscorea , Genoma de Planta , Repetições de Microssatélites , Melhoramento Vegetal , Dioscorea/genética , Melhoramento Vegetal/métodos , Bases de Dados Genéticas , Internet
5.
Front Genet ; 14: 1207306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323670

RESUMO

Background: In the Sesamum species complex, the lack of wild species genomic resources hinders the evolutionary comprehension of phylogenetic relationships. Results: In the present study, we generated complete chloroplast genomes of six wild relatives (Sesamum alatum, Sesamum angolense, Sesamum pedaloides, Ceratotheca sesamoides (syn. Sesamum sesamoides), Ceratotheca triloba (syn. Sesamum trilobum), and Sesamum radiatum) and a Korean cultivar, Sesamum indicum cv. Goenbaek. A typical quadripartite chloroplast structure, including two inverted repeats (IR), a large single copy (LSC), and a small single copy (SSC), was observed. A total of 114 unique genes encompassing 80 coding genes, four ribosomal RNAs, and 30 transfer RNAs were counted. The chloroplast genomes (152, 863-153, 338 bp) exhibited the IR contraction/expansion phenomenon and were quite conserved in both coding and non-coding regions. However, high values of the nucleotide diversity index were found in several genes, including ndhA, ndhE, ndhF, ycf1, and psaC-ndhD. Concordant tree topologies suggest ndhF as a useful marker for taxon discrimination. The phylogenetic inference and time divergence dating indicate that S. radiatum (2n = 64) occurred concomitantly with the sister species C. sesamoides (2n = 32) approximately 0.05 million years ago (Mya). In addition, S. alatum was clearly discriminated by forming a single clade, showing its long genetic distance and potential early speciation event in regards to the others. Conclusion: Altogether, we propose to rename C. sesamoides and C. triloba as S. sesamoides and S. trilobum, respectively, as suggested previously based on the morphological description. This study provides the first insight into the phylogenetic relationships among the cultivated and wild African native relatives. The chloroplast genome data lay a foundation for speciation genomics in the Sesamum species complex.

6.
Life (Basel) ; 12(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36013379

RESUMO

Peroxidases and laccases are oxidative enzymes involved in physiological processes in plants, covering responses to biotic and abiotic stress as well as biosynthesis of health-promoting specialized metabolites. Although they are thought to be involved in the biosynthesis of (+)-pinoresinol, a comprehensive investigation of this class of enzymes has not yet been conducted in the emerging oil crop sesame and no information is available regarding the potential (+)-pinoresinol synthase genes in this crop. In the present study, we conducted a pan-genome-wide identification of peroxidase and laccase genes coupled with transcriptome profiling of diverse sesame varieties. A total of 83 and 48 genes have been identified as coding for sesame peroxidase and laccase genes, respectively. Based on their protein domain and Arabidopsis thaliana genes used as baits, the genes were classified into nine and seven groups of peroxidase and laccase genes, respectively. The expression of the genes was evaluated using dynamic transcriptome sequencing data from six sesame varieties, including one elite cultivar, white vs black seed varieties, and high vs low oil content varieties. Two peroxidase genes (SiPOD52 and SiPOD63) and two laccase genes (SiLAC1 and SiLAC39), well conserved within the sesame pan-genome and exhibiting consistent expression patterns within sesame varieties matching the kinetic of (+)-pinoresinol accumulation in seeds, were identified as potential (+)-pinoresinol synthase genes. Cis-acting elements of the candidate genes revealed their potential involvement in development, hormonal signaling, and response to light and other abiotic triggers. Transcription factor enrichment analysis of promoter regions showed the predominance of MYB binding sequences. The findings from this study pave the way for lignans-oriented engineering of sesame with wide potential applications in food, health and medicinal domains.

7.
Plants (Basel) ; 11(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567213

RESUMO

Perilla, also termed as purple mint, Chinese basil, or Perilla mint, is a flavoring herb widely used in East Asia. Both crude oil and essential oil are employed for consumption as well as industrial purposes. Fatty acids (FAs) biosynthesis and oil body assemblies in Perilla have been extensively investigated over the last three decades. Recent advances have been made in order to reveal the enzymes involved in the fatty acid biosynthesis in Perilla. Among those fatty acids, alpha-linolenic acid retained the attention of scientists mainly due to its medicinal and nutraceutical properties. Lipids synthesis in Perilla exhibited similarities with Arabidopsis thaliana lipids' pathway. The homologous coding genes for polyunsaturated fatty acid desaturases, transcription factors, and major acyl-related enzymes have been found in Perilla via de novo transcriptome profiling, genome-wide association study, and in silico whole-genome screening. The identified genes covered de novo fatty acid synthesis, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, Triacylglycerols (TAGs) assembly, and acyl editing of phosphatidylcholine. In addition to the enzymes, transcription factors including WRINKLED, FUSCA3, LEAFY COTYLEDON1, and ABSCISIC ACID INSENSITIVE3 have been suggested. Meanwhile, the epigenome aspect impacting the transcriptional regulation of FAs is still unclear and might require more attention from the scientific community. This review mainly outlines the identification of the key gene master players involved in Perilla FAs biosynthesis and TAGs assembly that have been identified in recent years. With the recent advances in genomics resources regarding this orphan crop, we provided an updated overview of the recent contributions into the comprehension of the genetic background of fatty acid biosynthesis. The provided resources can be useful for further usage in oil-bioengineering and the design of alpha-linolenic acid-boosted Perilla genotypes in the future.

8.
Front Plant Sci ; 13: 942789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035665

RESUMO

Secondary metabolites are incontestably key specialized molecules with proven health-promoting effects on human beings. Naturally synthesized secondary metabolites are considered an important source of pharmaceuticals, food additives, cosmetics, flavors, etc., Therefore, enhancing the biosynthesis of these relevant metabolites by maintaining natural authenticity is getting more attention. The application of exogenous jasmonates (JAs) is well recognized for its ability to trigger plant growth and development. JAs have a large spectrum of action that covers seed germination, hypocotyl growth regulation, root elongation, petal expansion, and apical hook growth. This hormone is considered as one of the key regulators of the plant's growth and development when the plant is under biotic or abiotic stress. The JAs regulate signal transduction through cross-talking with other genes in plants and thereby deploy an appropriate metabolism in the normal or stressed conditions. It has also been found to be an effective chemical elicitor for the synthesis of naturally occurring secondary metabolites. This review discusses the significance of JAs in the growth and development of plants and the successful outcomes of jasmonate-driven elicitation of secondary metabolites including flavonoids, anthraquinones, anthocyanin, xanthonoid, and more from various plant species. However, as the enhancement of these metabolites is essentially measured via in vitro cell culture or foliar spray, the large-scale production is significantly limited. Recent advancements in the plant cell culture technology lay the possibilities for the large-scale manufacturing of plant-derived secondary metabolites. With the insights about the genetic background of the metabolite biosynthetic pathway, synthetic biology also appears to be a potential avenue for accelerating their production. This review, therefore, also discussed the potential manoeuvres that can be deployed to synthesis plant secondary metabolites at the large-scale using plant cell, tissue, and organ cultures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA