Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurol ; 13: 804507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386404

RESUMO

Image-guided and robot-assisted surgeries have found their applications in skullbase surgery. Technological improvements in terms of accuracy also opened new opportunities for robotically-assisted cochlear implantation surgery (RACIS). The HEARO® robotic system is an otological next-generation surgical robot to assist the surgeon. It first provides software-defined spatial boundaries for orientation and reference information to anatomical structures during otological and neurosurgical procedures. Second, it executes a preplanned drill trajectory through the temporal bone. Here, we report how safe the HEARO procedure can provide an autonomous minimally invasive inner ear access and the efficiency of this access to subsequently insert the electrode array during cochlear implantation. In 22 out of 25 included patients, the surgeon was able to complete the HEARO® procedure. The dedicated planning software (OTOPLAN®) allowed the surgeon to reconstruct a three-dimensional representation of all the relevant anatomical structures, designate the target on the cochlea, i.e., the round window, and plan the safest trajectory to reach it. This trajectory accommodated the safety distance to the critical structures while minimizing the insertion angles. A minimal distance of 0.4 and 0.3 mm was planned to facial nerve and chorda tympani, respectively. Intraoperative cone-beam CT supported safe passage for the 22 HEARO® procedures. The intraoperative accuracy analysis reported the following mean errors: 0.182 mm to target, 0.117 mm to facial nerve, and 0.107 mm to chorda tympani. This study demonstrates that microsurgical robotic technology can be used in different anatomical variations, even including a case of inner ear anomalies, with the geometrically correct keyhole to access to the inner ear. Future perspectives in RACIS may focus on improving intraoperative imaging, automated segmentation and trajectory, robotic insertion with controlled speed, and haptic feedback. This study [Experimental Antwerp robotic research otological surgery (EAR2OS) and Antwerp Robotic cochlear implantation (25 refers to 25 cases) (ARCI25)] was registered at clinicalTrials.gov under identifier NCT03746613 and NCT04102215. Clinical Trial Registration: https://www.clinicaltrials.gov, Identifier: NCT04102215.

2.
Front Surg ; 6: 58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632981

RESUMO

Facial nerve damage has a detrimental effect on a patient's life, therefore safety mechanisms to ensure its preservation are essential during lateral skull base surgery. During robotic cochlear implantation a trajectory passing the facial nerve at <0.5 mm is needed. Recently a stimulation probe and nerve monitoring approach were developed and introduced clinically, however for patient safety no trajectory was drilled closer than 0.4 mm. Here we assess the performance of the nerve monitoring system at closer distances. In a sheep model eight trajectories were drilled to test the setup followed by 12 trajectories during which the ENT surgeon relied solely on the nerve monitoring system and aborted the robotic drilling process if intraoperative nerve monitoring alerted of a distance <0.1 mm. Microcomputed tomography images and histopathology showed prospective use of the technology prevented facial nerve damage. Facial nerve monitoring integrated in a robotic system supports the surgeon's ability to proactively avoid damage to the facial nerve during robotic drilling in the mastoid.

3.
OTO Open ; 2(4): 2473974X18800238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30719505

RESUMO

OBJECTIVE: In the field of cochlear implantation, the current trend toward patient-specific electrode selection and the achievement of optimal audiologic outcomes has resulted in implant manufacturers developing a large portfolio of electrodes. The aim of this study was to bridge the gap between the known variability of cochlea length and this electrode portfolio. DESIGN: Retrospective analysis on cochlear length and shape in micro-computed tomography and cone beam computed tomography data. SETTING: Tertiary care medical center. SUBJECTS AND METHODS: A simple 2-step approach was developed to accurately estimate the individual cochlear length as well as the projected length of an electrode array inside the cochlea. The method is capable of predicting the length of the cochlea and the inserted electrode length at any specific angle. Validation of the approach was performed with 20 scans of human temporal bones (micro-computed tomography) and 47 pre- and postoperative clinical scans (cone beam computed tomography). RESULTS: Mean ± SD absolute errors in cochlear length estimations were 0.12 ± 0.10 mm, 0.38 ± 0.26 mm, and 0.71 ± 0.43 mm for 1, 1.5, and 2 cochlea turns, respectively. Predicted insertion angles based on clinical cone beam computed tomography data showed absolute deviations of 27° ± 18° to the corresponding postoperative measurements. CONCLUSION: With accuracy improvements of 80% to 90% in comparison with previously proposed approaches, the method is well suited for the use in individualized cochlear implantation.

4.
Acta Otolaryngol ; 137(4): 447-454, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28145157

RESUMO

CONCLUSION: A system for robotic cochlear implantation (rCI) has been developed and a corresponding surgical workflow has been described. The clinical feasibility was demonstrated through the conduction of a safe and effective rCI procedure. OBJECTIVES: To define a clinical workflow for rCI and demonstrate its feasibility, safety, and effectiveness within a clinical setting. METHOD: A clinical workflow for use of a previously described image guided surgical robot system for rCI was developed. Based on pre-operative images, a safe drilling tunnel targeting the round window was planned and drilled by the robotic system. Intra-operatively the drill path was assessed using imaging and sensor-based data to confirm the proximity of the facial nerve. Electrode array insertion was manually achieved under microscope visualization. Electrode array placement, structure preservation, and the accuracy of the drilling and of the safety mechanisms were assessed on post-operative CT images. RESULTS: Robotic drilling was conducted with an accuracy of 0.2 mm and safety mechanisms predicted proximity of the nerves to within 0.1 mm. The approach resulted in a minimal mastoidectomy and minimal incisions. Manual electrode array insertion was successfully performed through the robotically drilled tunnel. The procedure was performed without complications, and all surrounding structures were preserved.


Assuntos
Implante Coclear/métodos , Robótica , Estudos de Viabilidade , Humanos , Tomografia Computadorizada por Raios X , Fluxo de Trabalho
5.
Biomed Res Int ; 2014: 656325, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25110684

RESUMO

The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.


Assuntos
Cóclea/cirurgia , Mãos , Estomia/instrumentação , Robótica/instrumentação , Cirurgia Assistida por Computador/instrumentação , Animais , Fenômenos Biomecânicos , Galinhas , Simulação por Computador , Casca de Ovo , Estudos de Viabilidade , Humanos , Salas Cirúrgicas , Sus scrofa , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA