Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(2): 750-755, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36596213

RESUMO

The anomalously fast growth of the silicon oxide layer at room temperature has been reported for the Cu/Si system. However, the systematical exploration of such a reaction under humidity conditions has not yet been carried out. Through one combination of the experiments and first-principle density functional theory (DFT) simulations, here, we investigate the influence of the imparted Cu atoms in Cu/Si on the oxidation of Si with the presence of H2O. The Cu addition causes the geometric distortion of the Si lattice, which alters the charge transfer to absorbed H2O and decreases its dissociation energy. This results in the experimental formation of much defective SiOx for the Cu/Si system than bare Si under humidity conditions. Furthermore, the presence of such an oxide structure and the catalytic effect of Cu provide the suitable diffusion channels and adsorption sites for the H2O transport and its dissociation. This enhances the oxidation rate of Si consequently and results in the fast growth of the oxide layer on Cu/Si at room temperature.

2.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631506

RESUMO

Fluorescence imaging (FI) in the second near-infrared (NIR-II) window has emerged as a promising imaging method for cancer diagnosis because of its superior properties such as deep penetration depth and high signal-to-background ratio. Despite the superiorities of organic conjugated nanomaterials for NIR-II FI, the issues of low fluorescence quantum yield, weak metabolic capability, undefined molecular structure for conjugated polymers, weak light-harvesting ability, short emission wavelength, and high synthetic complexity for conjugated small molecules still remain to be concerned. We herein propose an oligomerization strategy by facilely adjusting the oligomerization time to balance the advantages and disadvantages between conjugated polymers and small molecules, obtaining the candidate (CO1, oligomerization time: 1 min) with the optimal NIR-II optical performance. Then the CO1 is further prepared into water-dispersed nanoparticles (CON1) via a nanoprecipitation approach. By virtue of the suitable size, excellent NIR-II optical properties, low toxicity, and strong cell-labeling ability, the CON1 is successfully employed for in vivo NIR-II imaging, permitting the real-time visualization of blood vascular system and tumors with high sensitivity and resolution. This work thus not only provides a personalized organic conjugated nano-agent for NIR-II FI, but also highlights the molecular strategy for the development of organic conjugated systems with optimal performance for bio-imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA