Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(7): 1867-1880, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363049

RESUMO

N6-methyladenonsine (m6A) is the most prevalent internal modification of messenger RNA (mRNA) and plays critical roles in mRNA processing and metabolism. However, perturbation of individual m6A modification to reveal its function and the phenotypic effects is still lacking in plants. Here, we describe the construction and characterization of programmable m6A editing tools by fusing the m6A writers, the core catalytic domain of the MTA and MTB complex, and the AlkB homologue 5 (ALKBH5) eraser, to catalytically dead Cas13a (dCas13a) to edit individual m6A sites on mRNAs. We demonstrated that our m6A editors could efficiently and specifically deposit and remove m6A modifications on specific RNA transcripts in both Nicotiana benthamiana and Arabidopsis thaliana. Moreover, we found that targeting SHORT-ROOT (SHR) transcripts with a methylation editor could significantly increase its m6A levels with limited off-target effects and promote its degradation. This leads to a boost in plant growth with enlarged leaves and roots, increased plant height, plant biomass, and total grain weight in Arabidopsis. Collectively, these findings suggest that our programmable m6A editing tools can be applied to study the functions of individual m6A modifications in plants, and may also have potential applications for future crop improvement.


Assuntos
Adenosina , Arabidopsis , Nicotiana , Arabidopsis/genética , Nicotiana/genética , Nicotiana/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Edição de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
2.
Phys Chem Chem Phys ; 26(26): 18333-18342, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912554

RESUMO

When calculating electric field gradients (EFGs), relativistic and electron correlation effects are crucial for obtaining accurate results, and the commonly used density functional methods produce unsatisfactory results, especially for heavy elements and/or strongly correlated systems. In this work, a stand-alone program is presented, which enables calculation of EFGs from the molecular orbitals supplied by an external high accuracy quantum chemical calculation and includes relativistic effects through the exact two-component (X2C) formalism and efficient local approximations to it. Application to BiN and BiP molecules shows that a high precision can be achieved in the calculation of nuclear quadrupole coupling constants of 209Bi by combining advanced ab initio methods with the X2C approach. For seventeen iron compounds, the Mössbauer nuclear quadrupole splittings (NQS) of 57Fe calculated using a double-hybrid functional method are in very good agreement with the experimental values. It is shown that, for strongly correlated molecules, the double-hybrid functionals are much more accurate than the commonly used hybrid functionals. The computer program developed in this study furnishes a useful utility for obtaining EFGs and related nuclear properties with high accuracy.

3.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38445728

RESUMO

We develop and demonstrate how to use the Graphical Unitary Group Approach (GUGA)-based MRCISD with Core-Valence Separation (CVS) approximation to compute the core-excited states. First, perform a normal Self-Consistent-Field (SCF) or valence MCSCF calculation to optimize the molecular orbitals. Second, rotate the optimized target core orbitals and append to the active space, form an extended CVS active space, and perform a CVS-MCSCF calculation for core-excited states. Finally, construct the CVS-MRCISD expansion space and perform a CVS-MRCISD calculation to optimize the CI coefficients based on the variational method. The CVS approximation with GUGA-based methods can be implemented by flexible truncation of the Distinct Row Table. Eliminating the valence-excited configurations from the CVS-MRCISD expansion space can prevent variational collapse in the Davidson iteration diagonalization. The accuracy of the CVS-MRCISD scheme was investigated for excitation energies and compared with that of the CVS-MCSCF and CVS-CASPT2 methods using the same active space. The results show that CVS-MRCISD is capable of reproducing well-matched vertical core excitation energies that are consistent with experiments by combining large basis sets and a rational reference space. The calculation results also highlight the fact that the dynamic correlation between electrons makes an undeniable contribution in core-excited states.

4.
ACS Appl Mater Interfaces ; 16(26): 33688-33695, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900983

RESUMO

Small Cu clusters are excellent candidates for the electrocatalytic reduction of carbon dioxide (CO2RR), and their catalytic performance is expected to be significantly influenced by the interaction between the substrate and cluster. In this study, we systematically investigate the CO2RR for a Cu3 cluster anchored on Janus MoSX (X = Se, Te) substrates using density functional theory calculations. These substrates feature a broken vertical mirror symmetry, which generates spontaneous out-of-plane polarization and offers two distinct polar surfaces to support the Cu3 cluster. Our findings reveal that the CO2RR performance on the Cu3 cluster is strongly influenced by the polarization direction and strength of the MoSX (X = Se, Te) substrates. Notably, the Cu3 cluster supported on the S-terminated MoSTe surface (Cu3(S)@MoSTe) demonstrates the highest CO2RR activity, producing methane. These results underscore the pivotal role of substrate polarization in modulating the binding strength of reactants and reaction intermediates, thereby enhancing the CO2RR efficiency.

5.
Sci Rep ; 14(1): 16457, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014129

RESUMO

Erectile dysfunction (ED) is the most prevalent consequences in men with diabetes mellitus (DM). Recent studies demonstrates that neutrophil extracellular traps (NETs) play important roles in DM and its complications. Nevertheless, whether NETs are involved in ED remains unknown. This work intended to explore the role and mechanisms of NETs in ED in the context of DM. Here, we observed that NET generation and pyroptosis were promoted in DM rats with ED compared with controls. Mechanistically, NETs facilitated NLRP3 inflammasome activation and subsequently triggered pyroptosis under high glucose stress, ultimately leading to ED. Intriguingly, DNase I (a NET degrading agent) alleviated ED and corpus cavernosum injury in DM rats. Overall, NETs might induce ED in DM by promoting NLRP3-mediated pyroptosis in the corpus cavernosum.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Armadilhas Extracelulares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Armadilhas Extracelulares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Masculino , Disfunção Erétil/metabolismo , Disfunção Erétil/etiologia , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Neutrófilos/metabolismo , Ratos Sprague-Dawley , Inflamassomos/metabolismo , Desoxirribonuclease I/metabolismo , Pênis/metabolismo , Pênis/patologia
6.
Sci Rep ; 14(1): 8642, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622172

RESUMO

Cation exchanger (CAX) genes play an important role in plant growth/development and response to biotic and abiotic stresses. Here, we tried to obtain important information on the functionalities and phenotypic effects of CAX gene family by systematic analyses of their expression patterns, genetic diversity (gene CDS haplotypes, structural variations, gene presence/absence variations) in 3010 rice genomes and nine parents of 496 Huanghuazhan introgression lines, the frequency shifts of the predominant gcHaps at these loci to artificial selection during modern breeding, and their association with tolerances to several abiotic stresses. Significant amounts of variation also exist in the cis-regulatory elements (CREs) of the OsCAX gene promoters in 50 high-quality rice genomes. The functional differentiation of OsCAX gene family were reflected primarily by their tissue and development specific expression patterns and in varied responses to different treatments, by unique sets of CREs in their promoters and their associations with specific agronomic traits/abiotic stress tolerances. Our results indicated that OsCAX1a and OsCAX2 as general signal transporters were in many processes of rice growth/development and responses to diverse environments, but they might be of less value in rice improvement. OsCAX1b, OsCAX1c, OsCAX3 and OsCAX4 was expected to be of potential value in rice improvement because of their associations with specific traits, responsiveness to specific abiotic stresses or phytohormones, and relatively high gcHap and CRE diversity. Our strategy was demonstrated to be highly efficient to obtain important genetic information on genes/alleles of specific gene family and can be used to systematically characterize the other rice gene families.


Assuntos
Oryza , Melhoramento Vegetal , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico/genética , Cátions/metabolismo , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA