Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1137643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065116

RESUMO

Temperature is one of the main factors affecting aflatoxin (AF) biosynthesis in Aspergillus flavus. Previous studies showed that AF biosynthesis is elevated in A. flavus at temperatures between 28°C-30°C, while it is inhibited at temperatures above 30°C. However, little is known about the metabolic mechanism underlying temperature-regulated AF biosynthesis. In this study, we integrated metabolomic and lipidomic analyses to investigate the endogenous metabolism of A. flavus across 6 days of mycelia growth at 28°C (optimal AF production) and 37°C (no AF production). Results showed that both metabolite and lipid profiles were significantly altered at different temperatures. In particular, metabolites involved in carbohydrate and amino acid metabolism were up-regulated at 37°C on the second day but down-regulated from days three to six. Moreover, lipidomics and targeted fatty acids analyses of mycelia samples revealed a distinct pattern of lipid species and free fatty acids desaturation. High degrees of polyunsaturation of most lipid species at 28°C were positively correlated with AF production. These results provide new insights into the underlying metabolic changes in A. flavus under temperature stress.

2.
J Agric Food Chem ; 70(50): 15928-15944, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36508213

RESUMO

Oxylipins play important signaling roles in aflatoxin (AF) biosynthesis in Aspergillus flavus. We previously showed that exogenous supply of autoxidated linolenic acid (AL) inhibited AF biosynthesis in A. flavus via oxylipins, but the molecular mechanism is still unknown. Here, we performed multiomics analyses of A. flavus grown in media with or without AL. Targeted metabolite analyses and quantitative reverse transcription (qRT)-polymerase chain reaction (PCR) showed that the imizoquin (IMQ) biosynthetic pathway was distinctly upregulated in the presence of AL. 13C-glucose labeling confirmed in parallel that the tricarboxylic acid cycle was also enhanced by AL, consistent with observed increases in mycelial growth. Moreover, we integrated thermal proteome profiling and molecular dynamics simulations to identify a potential receptor of AL; AL was found to interact with a transporter (ImqJ) located in the IMQ gene cluster, primarily through hydrophobic interactions. Further analyses of strains with an IMQ pathway transcription factor overexpressed or knocked out confirmed that this pathway was critical for AL-mediated inhibition of AF biosynthesis. Comparison of 22 assembled A. flavus and Aspergillus oryzae genomes showed that genes involved in the IMQ pathway were positively selected in A. oryzae. Taken together, the results of our study provide novel insights into oxylipin-mediated regulation of AF biosynthesis and suggest potential methods for preventing AF contamination of crops.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/metabolismo , Oxilipinas/metabolismo , Ácido alfa-Linolênico , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA