Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Plant J ; 116(5): 1309-1324, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37614043

RESUMO

Citrus production is severely threatened by the devastating Huanglongbing (HLB) disease globally. By studying and analyzing the defensive behaviors of an HLB-tolerant citrus cultivar 'Shatangju', we discovered that citrus can sense Candidatus Liberibacter asiaticus (CLas) infection and induce immune responses against HLB, which can be further strengthened by both endogenously produced and exogenously applied methyl salicylate (MeSA). This immune circuit is turned on by an miR2977-SAMT (encoding a citrus Salicylate [SA] O-methyltransferase) cascade, by which CLas infection leads to more in planta MeSA production and aerial emission. We provided both transgenic and multi-year trail evidences that MeSA is an effective community immune signal. Ambient MeSA accumulation and foliage application can effectively induce defense gene expression and significantly boost citrus performance. We also found that miRNAs are battle fields between citrus and CLas, and about 30% of the differential gene expression upon CLas infection are regulated by miRNAs. Furthermore, CLas hijacks host key processes by manipulating key citrus miRNAs, and citrus employs miRNAs that coordinately regulate defense-related genes. Based on our results, we proposed that miRNAs and associated components are key targets for engineering or breeding resistant citrus varieties. We anticipate that MeSA-based management, either induced expression or external application, would be a promising tool for HLB control.


Assuntos
Citrus , MicroRNAs , Rhizobiaceae , Citrus/fisiologia , Doenças das Plantas , Melhoramento Vegetal , Salicilatos/metabolismo , Liberibacter/genética , MicroRNAs/genética , MicroRNAs/metabolismo
2.
J Exp Bot ; 74(15): 4670-4684, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37166404

RESUMO

Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium 'Candidatus Liberibacter asiaticus' (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. 'Wanjincheng' orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.


Assuntos
Infecções Bacterianas , Citrus , Hemípteros , Rhizobiaceae , Animais , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Liberibacter/genética , Plantas Geneticamente Modificadas/genética , Citrus/genética , Doenças das Plantas/microbiologia , Hemípteros/fisiologia
3.
Plant J ; 106(4): 1039-1057, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33754403

RESUMO

Citrus sinensis lateral organ boundary 1 (CsLOB1) was previously identified as a critical disease susceptibility gene for citrus bacterial canker, which is caused by Xanthomonas citri subsp. citri (Xcc). However, the molecular mechanisms of CsLOB1 in citrus response to Xcc are still elusive. Here, we constructed transgenic plants overexpressing and RNAi-silencing of CsLOB1 using the canker-disease susceptible 'wanjincheng' orange (C. sinensis Osbeck) as explants. CsLOB1-overexpressing plants exhibited dwarf phenotypes with smaller and thicker leaf, increased branches and adventitious buds clustered on stems. These phenotypes were followed by a process of pustule- and canker-like development that exhibited enhanced cell proliferation. Pectin depolymerization and expansin accumulation were enhanced by CsLOB1 overexpression, while cellulose and hemicellulose synthesis were increased by CsLOB1 silence. Whilst overexpression of CsLOB1 increased susceptibility, RNAi-silencing of CsLOB1 enhanced resistance to canker disease without impairing pathogen entry. Transcriptome analysis revealed that CsLOB1 positively regulated cell wall degradation and modification processes, cytokinin metabolism, and cell division. Additionally, 565 CsLOB1-targeted genes were identified in chromatin immunoprecipitation-sequencing (ChIP-seq) experiments. Motif discovery analysis revealed that the most highly overrepresented binding sites had a conserved 6-bp 'GCGGCG' consensus DNA motif. RNA-seq and ChIP-seq data suggested that CsLOB1 directly activates the expression of four genes involved in cell wall remodeling, and three genes that participate in cytokinin and brassinosteroid hormone pathways. Our findings indicate that CsLOB1 promotes cell proliferation by mechanisms depending on cell wall remodeling and phytohormone signaling, which may be critical to citrus canker development and bacterial growth in citrus.


Assuntos
Citrus sinensis/genética , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Xanthomonas/fisiologia , Proliferação de Células , Parede Celular/metabolismo , Citrus sinensis/citologia , Citrus sinensis/imunologia , Citrus sinensis/microbiologia , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Doenças das Plantas/microbiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Transdução de Sinais , Transcriptoma , Xanthomonas/patogenicidade
4.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33579681

RESUMO

Although emerging evidence indicates that bacteria extracellularly export many cytoplasmic proteins referred to as non-classically secreted proteins (ncSecPs) for their own benefit, the mechanisms and functional significance of the ncSecPs in extracellular milieu remain elusive. "Candidatus Liberibacter asiaticus" (CLas) is a fastidious Gram-negative bacterium that causes Huanglongbing (HLB), the most globally devastating citrus disease. In this study, using the SecretomeP program coupled with an Escherichia coli alkaline phosphatase assay, we identified 27 ncSecPs from the CLas genome. Further, we demonstrated that 10 of these exhibited significantly higher levels of gene expression in citrus than in psyllid hosts, and particularly suppressed hypersensitive response (HR)-based cell death and H2O2 overaccumulation in Nicotiana benthamiana, indicating their opposing effects on early plant defenses. However, these proteins also dramatically enhanced the gene expression of pathogenesis-related 1 protein (PR-1), PR-2, and PR-5, essential components of plant defense mechanisms. Additional experiments disclosed that the increased expression of these PR genes, in particular PR-1 and PR-5, could negatively regulate HR-based cell death development and H2O2 accumulation. Remarkably, CLas infection clearly induced gene expression of PR-1, PR-2, and PR-5 in both HLB-tolerant and HLB-susceptible species of citrus plants. Taken together, we hypothesized that CLas has evolved an arsenal of ncSecPs that function cooperatively to overwhelm the early plant defenses by inducing host PR genes.IMPORTANCE In this study, we present a combined computational and experimental methodology that allows a rapid and efficient identification of the ncSecPs from bacteria, in particular the unculturable bacteria like CLas. Meanwhile, the study determined that a number of CLas ncSecPs suppressed HR-based cell death, and thus indicated a novel role for the bacterial ncSecPs in extracellular milieu. More importantly, these ncSecPs were found to suppress cell death presumably by utilizing host PR proteins. The data overall provide a novel clue to understand the CLas pathogenesis and also suggest a new way by which phytopathogens manipulate host cellular machinery to establish infection.

5.
New Phytol ; 231(1): 210-224, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33742463

RESUMO

The low DNA recombination efficiency of site-specific recombinase systems in plants limits their application; however, the underlying mechanism is unknown. We evaluate the gene deletion performance of four recombinase systems (Cre/loxP, Flp/FRT, KD/KDRT and B3/B3RT) in tobacco where the recombinases are under the control of germline-specific promoters. We find that the expression of these recombinases results mostly in gene silencing rather than gene deletion. Using the Cre/loxP system as a model, we reveal that the region flanked by loxP sites (floxed) is hypermethylated, which prevents floxed genes from deletion while silencing the expression of the genes. We further show CG methylation alone in the recombinase binding element of the loxP site is unable to impede gene deletion; instead, CHH methylation in the crossover region is required to inhibit loxP recombination. Our study illustrates the important role of recombinase-induced DNA methylation in the inhibition of site-specific DNA recombination and uncovers the mechanism underlying recombinase-associated gene silence in plants.


Assuntos
Metilação de DNA , Recombinação Genética , Metilação de DNA/genética , Deleção de Genes , Integrases/genética , Integrases/metabolismo , Recombinação Genética/genética
6.
Transgenic Res ; 30(5): 635-647, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34076822

RESUMO

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a major bacterial disease responsible for substantial economic losses in citrus-producing areas. To breed transgenic citrus plants with enhanced resistance to citrus canker, two antimicrobial peptide genes, PR1aCB and AATCB, were incorporated into 'Tarocco' blood orange (Citrus sinensis Osbeck) plants via co-transformation and sequential re-transformation. The presence of PR1aCB and AATCB in double transgenic plants was confirmed by PCR. The expression of PR1aCB and AATCB in double transformants was demonstrated by quantitative real-time PCR. An in vivo disease resistance assay involving the injection of Xcc revealed that the double transformants were more resistant to citrus canker than the single gene transformants and wild-type plants. An analysis of the bacterial population indicated that the enhanced citrus canker resistance of the double transformants was due to inhibited Xcc growth. These results proved that the pyramiding of multiple genes is a more effective strategy for increasing the disease resistance of transgenic citrus plants than single gene transformations.


Assuntos
Anti-Infecciosos , Citrus sinensis , Citrus , Peptídeos Antimicrobianos , Citrus/genética , Citrus sinensis/genética , Melhoramento Vegetal , Doenças das Plantas/genética
7.
Plant Cell Rep ; 40(3): 529-541, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33386424

RESUMO

KEY MESSAGE: Overexpression of CiNPR4 enhanced resistance of transgenic citrus plants to Huanglongbing by perceiving the salicylic acid and jasmonic acid signals and up-regulating the transcriptional activities of plant-pathogen interaction genes. Developing transgenic citrus plants with enhanced immunity is an efficient strategy to control citrus Huanglongbing (HLB). Here, a nonexpressor of pathogenesis-related gene 1 (NPR1) like gene from HLB-tolerant 'Jackson' grapefruit (Citrus paradisi Macf.), CiNPR4, was introduced into 'Wanjincheng' orange (Citrus sinensis Obseck). CiNPR4 expression was determined in transgenic citrus plants using quantitative real-time PCR analyses. The Candidatus Liberibacter asiaticus (CLas) pathogen of HLB was successfully transmitted to transgenic citrus plants by grafting infected buds. HLB symptoms developed in transgenic and wild-type (WT) plants by 9 months after inoculation. A CLas population analysis showed that 26.9% of transgenic lines exhibited significantly lower CLas titer levels compared with the CLas-infected WT plants at 21 months after inoculation. Lower starch contents and anatomical aberration levels in the phloem were observed in transgenic lines having enhanced resistance compared with CLas-infected WT plants. CiNPR4 overexpression changed the jasmonic acid, but not salicylic acid, level. Additionally, the jasmonic acid and salicylic acid levels increased after CLas infection. Transcriptome analyses revealed that the enhanced resistance of transgenic plants to HLB resulted from the up-regulated transcriptional activities of plant-pathogen interaction-related genes.


Assuntos
Citrus paradisi/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/microbiologia , Citrus paradisi/microbiologia , Ciclopentanos/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Liberibacter/patogenicidade , Oxilipinas/metabolismo , Floema/anatomia & histologia , Floema/genética , Filogenia , Reprodutibilidade dos Testes , Ácido Salicílico/metabolismo , Análise de Sequência de RNA , Amido/genética , Amido/metabolismo
8.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802058

RESUMO

Citrus Huanglongbing (HLB) disease or citrus greening is caused by Candidatus Liberibacter asiaticus (Las) and is the most devastating disease in the global citrus industry. Salicylic acid (SA) plays a central role in regulating plant defenses against pathogenic attack. SA methyltransferase (SAMT) modulates SA homeostasis by converting SA to methyl salicylate (MeSA). Here, we report on the functions of the citrus SAMT (CsSAMT1) gene from HLB-susceptible Wanjincheng orange (Citrus sinensis (L.) Osbeck) in plant defenses against Las infection. The CsSAMT1 cDNA was expressed in yeast. Using in vitro enzyme assays, yeast expressing CsSAMT1 was confirmed to specifically catalyze the formation of MeSA using SA as a substrate. Transgenic Wanjincheng orange plants overexpressing CsSAMT1 had significantly increased levels of SA and MeSA compared to wild-type controls. HLB resistance was evaluated for two years and showed that transgenic plants displayed significantly alleviated symptoms including a lack of chlorosis, low bacterial counts, reduced hyperplasia of the phloem cells, and lower levels of starch and callose compared to wild-type plants. These data confirmed that CsSAMT1 overexpression confers an enhanced tolerance to Las in citrus fruits. RNA-seq analysis revealed that CsSAMT1 overexpression significantly upregulated the citrus defense response by enhancing the transcription of disease resistance genes. This study provides insight for improving host resistance to HLB by manipulation of SA signaling in citrus fruits.


Assuntos
Citrus sinensis/genética , Resistência à Doença/genética , Metiltransferases/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Citrus sinensis/microbiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Liberibacter/fisiologia , Metiltransferases/metabolismo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA-Seq/métodos , Ácido Salicílico/metabolismo , Homologia de Sequência de Aminoácidos
9.
Angew Chem Int Ed Engl ; 57(34): 10989-10993, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-29972286

RESUMO

The single copper atom doped clusters CuAl4 O7-9 - can catalyze CO oxidation by O2 . The CuAl4 O7-9 - clusters are the first group of experimentally identified noble-metal free single atom catalysts for such a prototypical reaction. The reactions were characterized by mass spectrometry and density functional theory calculations. The CuAl4 O9 CO- is much more reactive than CuAl4 O9 - in the reaction with CO to generate CO2 . One adsorbed CO is crucial to stabilize Cu of CuAl4 O9 - around +I oxidation state and promote the oxidation of another CO. The widely emphasized correlation between the catalytic reactivity of CO oxidation and Cu oxidation state can be understood at the strictly molecular level. The remarkable difference between Cu catalysis and noble-metal catalysis was discussed.

10.
Plant Mol Biol ; 93(4-5): 341-353, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27866312

RESUMO

KEY MESSAGE: Expression of synthesized cecropin B genes in the citrus phloem, where Candidatus Liberibacter asiaticus resides, significantly decreased host susceptibility to Huanglongbing. Huanglongbing (HLB), associated with Candidatus Liberibacter asiaticus bacteria, is the most destructive disease of citrus worldwide. All of the commercial sweet orange cultivars lack resistance to this disease. The cationic lytic peptide cecropin B, isolated from the Chinese tasar moth (Antheraea pernyi), has been shown to effectively eliminate bacteria. In this study, we demonstrated that transgenic citrus (Citrus sinensis Osbeck) expressing the cecropin B gene specifically in the phloem had a decreased susceptibility to HLB. Three plant codon-optimized synthetic cecropin B genes, which were designed to secrete the cecropin B peptide into three specific sites, the extracellular space, the cytoplasm, and the endoplasmic reticulum, were constructed. Under the control of the selected phloem-specific promoter GRP1.8, these constructs were transferred into the citrus genome. All of the cecropin B genes were efficiently expressed in the phloem of transgenic plants. Over more than a year of evaluation, the transgenic lines exhibited reduced disease severity. Bacterial populations in transgenic lines were significantly lower than in the controls. Two lines, in which bacterial populations were significantly lower than in others, showed no visible symptoms. Thus, we demonstrated the potential application of the phloem-specific expression of an antimicrobial peptide gene to protect citrus plants from HLB.


Assuntos
Citrus sinensis/genética , Proteínas de Insetos/genética , Floema/genética , Doenças das Plantas/genética , Animais , Western Blotting , Citrus sinensis/metabolismo , Citrus sinensis/microbiologia , Resistência à Doença/genética , Expressão Gênica , Interações Hospedeiro-Patógeno , Imuno-Histoquímica , Proteínas de Insetos/metabolismo , Mariposas/genética , Floema/metabolismo , Floema/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobiaceae/fisiologia
11.
Plant Biotechnol J ; 15(12): 1509-1519, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28371200

RESUMO

Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is severely damaging to the global citrus industry. Targeted editing of host disease-susceptibility genes represents an interesting and potentially durable alternative in plant breeding for resistance. Here, we report improvement of citrus canker resistance through CRISPR/Cas9-targeted modification of the susceptibility gene CsLOB1 promoter in citrus. Wanjincheng orange (Citrus sinensis Osbeck) harbours at least three copies of the CsLOB1G allele and one copy of the CsLOB1- allele. The promoter of both alleles contains the effector binding element (EBEPthA4 ), which is recognized by the main effector PthA4 of Xcc to activate CsLOB1 expression to promote citrus canker development. Five pCas9/CsLOB1sgRNA constructs were designed to modify the EBEPthA4 of the CsLOB1 promoter in Wanjincheng orange. Among these constructs, mutation rates were 11.5%-64.7%. Homozygous mutants were generated directly from citrus explants. Sixteen lines that harboured EBEPthA4 modifications were identified from 38 mutant plants. Four mutation lines (S2-5, S2-6, S2-12 and S5-13), in which promoter editing disrupted CsLOB1 induction in response to Xcc infection, showed enhanced resistance to citrus canker compared with the wild type. No canker symptoms were observed in the S2-6 and S5-13 lines. Promoter editing of CsLOB1G alone was sufficient to enhance citrus canker resistance in Wanjincheng orange. Deletion of the entire EBEPthA4 sequence from both CsLOB1 alleles conferred a high degree of resistance to citrus canker. The results demonstrate that CRISPR/Cas9-mediated promoter editing of CsLOB1 is an efficient strategy for generation of canker-resistant citrus cultivars.


Assuntos
Sistemas CRISPR-Cas , Citrus/genética , Citrus/microbiologia , Proteínas de Plantas/genética , Xanthomonas/patogenicidade , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Heterozigoto , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
12.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 15-34, 2024 Jan 25.
Artigo em Zh | MEDLINE | ID: mdl-38258629

RESUMO

Jasmonic acid (JA), a plant endogenously synthesized lipid hormone, plays an important role in response to stress. This manuscript summarized the biosynthesis and metabolism of JA and its related regulatory mechanisms, as well as the signal transduction of JA. The mechanism and regulatory network of JA in plant response to biotic and abiotic stresses were systematically reviewed, with the latest advances highlighted. In addition, this review summarized the signal crosstalk between JA and other hormones in regulating plant resistance to various stresses. Finally, the problems to be solved in the study of plant stress resistance mediated by JA were discussed, and the application of new molecular biological technologies in regulating JA signaling to enhance crop resistance was prospected, with the aim to facilitate future research and application of plant stress resistance.


Assuntos
Ciclopentanos , Transdução de Sinais , Oxilipinas , Reguladores de Crescimento de Plantas
13.
Hortic Res ; 11(2): uhad276, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344648

RESUMO

Huanglongbing (HLB) primarily caused by Candidatus Liberibacter asiaticus (CLas) has been threatening citrus production globally. Under HLB conditions, an excessive accumulation of the polysaccharide callose in citrus phloem occurs, leading to phloem blockage and starch accumulation in leaves. The callose production is controlled by callose synthases (CalS), which have multiple members within plants. However, the knowledge of callose production in the citrus upon infection with CLas is limited. In this study, we firstly identified 11 CalSs in the Citrus sinensis genome through bioinformatics and found the expression pattern of CsCalS11 exhibited a positive correlation with callose deposition in CLas-infected leaves (correlation coefficient of 0.77, P ≤ 0.05). Knockdown of CsCalS11 resulted in a reduction of callose deposition and starch accumulation in CLas-infected citrus. Interestingly, we observed significantly higher concentrations of abscisic acid (ABA) in HLB-infected citrus leaves compared to uninfected ones. Furthermore, the expressions of CsABI5, CsPYR, and CsSnRK2 in the ABA pathway substantially increased in citrus leaves upon CLas infection. Additionally, the expression of CsCalS11 was significantly upregulated in citrus leaves following the application of exogenous ABA. We confirmed that CsABI5, a pivotal component of the ABA signaling pathway, regulates CsCalS11 expression by binding to its promoter using yeast one-hybrid assay, dual luciferase assay, and transient expression in citrus leaves. In conclusion, our findings strongly suggest that the CsABI5-CsCalS11 module plays a crucial role in regulating callose deposition through the ABA signaling pathway during CLas infection. The results also revealed new function of the ABA signaling pathway in plants under biotic stress.

14.
Plant Cell Rep ; 32(10): 1601-13, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23771575

RESUMO

KEY MESSAGE: A highly efficient Cre-mediated deletion system, offering a good alternative for producing marker-free transgenic plants that will relieve public concerns regarding GMOs, was first developed in citrus. The presence of marker genes in genetically modified crops raises public concerns regarding their safety. The removal of marker genes can prevent the risk of their flow into the environment and hasten the public's acceptance of transgenic products. In this study, a new construct based on the Cre/loxP site-recombination system was designed to delete marker genes from transgenic citrus. In the construct, the selectable marker gene isopentenyltransferase gene (ipt) from Agrobacterium tumefaciens and the Cre recombinase gene were flanked by two loxP recognition sites in the direct orientation. The green fluorescent protein (gfp) reporter gene for monitoring the transformation of foreign genes was located outside of the loxP sequences. Transformation and deletion efficiencies of the vector were investigated using nopaline synthase gene (NosP) and CaMV 35S promoters to drive expression of Cre. Analysis of GFP activity showed that 28.1 and 13.6 % transformation efficiencies could be obtained by NosP- and CaMV 35S-driven deletions, respectively. Molecular analysis demonstrated that 100 % deletion efficiency was observed in the transgenic plants. The complete excision of the marker gene was found in all deletion events driven by NosP and in 81.8 % of deletion events driven by CaMV 35S. The results showed that Cre/loxP-mediated excision was highly efficient and precise in citrus. This approach provides a reliable strategy for auto-deletion of selectable marker genes from transgenic citrus to produce marker-free transgenic plants.


Assuntos
Alquil e Aril Transferases , Citrus/genética , Integrases , Plantas Geneticamente Modificadas/genética , Agrobacterium tumefaciens/enzimologia , Alquil e Aril Transferases/genética , Sequência de Bases , DNA Bacteriano/genética , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Dados de Sequência Molecular , Recombinação Genética , Transformação Genética
15.
Environ Manage ; 52(2): 441-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23797483

RESUMO

Alpine grassland of Tibet is a frangible ecosystem in terms of carbon (C) emission. Yak dung is an important resident energy with about 80 % of yak dung combusted for energy in the north Tibetan plateau. This paper investigated the impact of dung combustion on the C cycle of the alpine grassland ecosystem in north Tibet, China. During the growing season of 2011, from a field survey and household questionnaires, the main impacts of dung collection for fuel on the C cycle of the ecosystem were identified. (1) The C sequestration and storage capacity, including the dung-derived C stored in soil and C captured by vegetation, decreased. The net primary production decreased remarkably because of the reduction of dung returned to soil. (2) In a given period, more C was emitted to the atmosphere in the dung combustion situation than that in the dung returned to soil situation. (3) The energy grazing alpine meadow ecosystem changed into a net C source, and the net biome production of the ecosystem dropped to -15.18 g C/m2 year in the dung combustion situation, 42.95 g C/m2 year less than that in the dung returned situation. To reduce the CO2 emission derived from dung use, the proportion of dung combustion should be reduced and alternative renewable energy such as solar, wind, or hydro energy should be advocated, which is suitable for, and accessible to, the north Tibetan plateau.


Assuntos
Ciclo do Carbono , Fontes Geradoras de Energia , Esterco , Animais , Carbono/análise , Bovinos , Ingestão de Alimentos , Humanos , Poaceae , Solo/química , Inquéritos e Questionários , Tibet
16.
Int J Biol Macromol ; 229: 964-973, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36587648

RESUMO

Citrus bacterial canker (CBC) is a serious bacterial disease affecting citrus plantations and the citrus industry all over the world. We have previously shown that an apetala 2/ethylene response factor in Citrus sinensis, CsAP2-09, positively regulated resistance to CBC, although the regulatory mechanisms remained undetermined. Here, we demonstrated that CsAP2-09 positively and sustainably controlled resistance to CBC in three-year transgenic plants. CsAP2-09 was found to be a transcriptional activator, and qRT-PCR and dual luciferase assays showed that it controlled the expression CsGH3.1L. CsAP2-09 bound directly to the promotor of CsGH3.1L, shown by yeast one-hybrid assay, with the binding site confirmed by electrophoretic mobility shift assay. Biochemical assays showed that CsAP2-09 negatively regulated the biosynthesis of indole acetic acid (IAA) and positively regulated that of salicylic acid (SA) and ethylene, verified with transient overexpression of CsGH3.1L. The combination of these results with those of previous reports indicated that SA, ethylene, and IAA can directly regulate CBC resistance. Overall, we revealed a pathway whereby CsAP2-09 conferred CBC resistance by direct binding to the CsGH3.1L promoter, activating its expression and modulating IAA, SA, and ethylene biosynthesis. Our study indicates the potential value of manipulating CsAP2-09 and CsGH3.1L in the breeding of CBC-resistant citrus.


Assuntos
Citrus sinensis , Citrus , Citrus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Melhoramento Vegetal , Citrus sinensis/metabolismo , Ácido Salicílico/metabolismo , Etilenos/metabolismo , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Mol Hortic ; 3(1): 14, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37789492

RESUMO

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the temperature increased from 25 °C to 32 °C, CaLas growth and symptom development in transgenic plants were slower than those in WT controls. RNA-seq analysis of transgenic plants showed that CaLasSDE460 affected multiple biological processes. At 25 °C, transcription activities of the "Protein processing in endoplasmic reticulum" and "Cyanoamino acid metabolism" pathways increased while transcription activities of many pathways decreased at 32 °C. 124 and 53 genes, separately annotated to plant-pathogen interaction and MAPK signaling pathways, showed decreased expression at 32 °C, compared with these (38 for plant-pathogen interaction and 17 for MAPK signaling) at 25 °C. Several important genes (MAPKKK14, HSP70b, NCED3 and WRKY33), remarkably affected by CaLasSDE460, were identified. Totally, our data suggested that CaLasSDE460 participated in the pathogenesis of CaLas through interfering transcription activities of citrus defense response and this interfering was temperature-dependent.

18.
Hortic Res ; 10(9): uhad159, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719271

RESUMO

The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus.

19.
Hortic Res ; 8(1): 50, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33642585

RESUMO

Pathological hypertrophy (cell enlargement) plays an important role in the development of citrus canker, but its regulators are largely unknown. Although WRKY22 is known to be involved in pathogen-triggered immunity and positively regulates resistance to bacterial pathogens in Arabidopsis, rice and pepper, the CRISPR/Cas9-mediated partial knockout of CsWRKY22 improves resistance to Xanthomonas citri subsp. citri (Xcc) in Wanjincheng orange (Citrus sinensis Osbeck). Here, we demonstrate that CsWRKY22 is a nucleus-localized transcriptional activator. CsWRKY22-overexpressing plants exhibited dwarf phenotypes that had wrinkled and thickened leaves and were more sensitive to Xcc, whereas CsWRKY22-silenced plants showed no visible phenotype changes and were more resistant to Xcc. Microscopic observations revealed that the overexpression of CsWRKY22 increased cell size in the spongy mesophyll. Transcriptome analysis showed that cell growth-related pathways, such as the auxin and brassinosteroid hormonal signaling and cell wall organization and biogenesis pathways, were significantly upregulated upon CsWRKY22 overexpression. Interestingly, CsWRKY22 activated the expression of CsLOB1, which is a key gene regulating susceptibility to citrus canker. We further confirmed that CsWRKY22 bound directly to the W-boxes just upstream of the transcription start site of CsLOB1 in vivo and in vitro. We conclude that CsWRKY22 enhances susceptibility to citrus canker by promoting host hypertrophy and CsLOB1 expression. Thus, our study provides new insights into the mechanism regulating pathological hypertrophy and the function of WRKY22 in citrus.

20.
Front Microbiol ; 12: 797841, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35265048

RESUMO

Huanglongbing (HLB), caused by "Candidatus liberibacter asiaticus" (CaLas), is one of the most devastating diseases in citrus but its pathogenesis remains poorly understood. Here, we reported the role of the CaLasSDE115 (CLIBASIA_05115) effector, encoded by CaLas, during pathogen-host interactions. Bioinformatics analyses showed that CaLasSDE115 was 100% conserved in all reported CaLas strains but had sequence differences compared with orthologs from other "Candidatus liberibacter." Prediction of protein structures suggested that the crystal structure of CaLasSDE115 was very close to that of the invasion-related protein B (IalB), a virulence factor from Bartonella henselae. Alkaline phosphatase (PhoA) assay in E. coli further confirmed that CaLasSDE115 was a Sec-dependent secretory protein while subcellular localization analyses in tobacco showed that the mature protein of SDE115 (mSDE115), without its putative Sec-dependent signal peptide, was distributed in the cytoplasm and the nucleus. Expression levels of CaLasSDE115 in CaLas-infected Asian citrus psyllid (ACP) were much higher (∼45-fold) than those in CaLas-infected Wanjincheng oranges, with the expression in symptomatic leaves being significantly higher than that in asymptomatic ones. Additionally, the overexpression of mSDE115 favored CaLas proliferation during the early stages (2 months) of infection while promoting the development of symptoms. Hormone content and gene expression analysis of transgenic plants also suggested that overexpressing mSDE115 modulated the transcriptional regulation of genes involved in systemic acquired resistance (SAR) response. Overall, our data indicated that CaLasSDE115 effector contributed to the early colonization of citrus by the pathogen and worsened the occurrence of Huanglongbing symptoms, thereby providing a theoretical basis for further exploring the pathogenic mechanisms of Huanglongbing disease in citrus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA