Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Sleep Breath ; 28(3): 1155-1163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221554

RESUMO

OBJECTIVE: To investigate the distribution characteristics of intestinal flora in patients with obstructive sleep apnoea hypopnea syndrome (OSAHS) of different severities and the relationship between different intestinal flora and sleep structure disorder, hypoxemia and obesity. METHODS: A total of 25 healthy volunteers and 80 patients with OSAHS were enrolled in this study. The control group was healthy, and the experimental group comprised patients with OSAHS. The apnoea-hypopnea index (AHI), minimum saturation of peripheral oxygen (SpO2min), mean saturation of peripheral oxygen, body mass index, maximum apnoea time and other indicators were collected in clinical practice. The patients with OSAHS were divided into 20 mild and 42 moderate OSAHS cases, as well as 18 patients with severe OSAHS according to the AHI classification. Bioinformatics-related statistics were analysed using the QIIME2 software, and clinical data were analysed with the SPSS 22.0 software. RESULTS: The changes in microbial alpha diversity in the intestinal flora of patients with OSAHS showed that richness, diversity and evenness decreased, but the beta diversity did not change significantly. The Thermus Anoxybacillus, Anaerofustis, Blautia, Sediminibacterium, Ralstonia, Pelomonas, Ochrobactrum, Thermus Sediminibacterium, Ralstonia, Coccidia, Cyanobacteria, Anoxic bacilli and Anaerobes were negatively correlated with AHI (r = -0.38, -0.36, -0.35, -0.33, -0.31, -0.29, -0.22, -0.18) and positively correlated with SpO2min (r =0.38, 0.2, 0.25, 0.22, 0.24, 0.11, 0.23, 0.15). CONCLUSION: Some bacteria showed a significant correlation with clinical sleep monitoring data, which provides a possibility for the assessment of disease risk, but the mechanisms of their actions in the intestinal tract are not clear at present. Further research and observations are needed.


Assuntos
Microbioma Gastrointestinal , Hipóxia , Obesidade , Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/microbiologia , Microbioma Gastrointestinal/fisiologia , Masculino , Pessoa de Meia-Idade , Adulto , Feminino , Obesidade/microbiologia , Hipóxia/microbiologia
2.
Small ; 19(45): e2303414, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431206

RESUMO

Collagen-based hydrogels have a significant impact on wound healing, but they suffer from structural instability and bacterial invasion in infected wounds. Here, electrospun nanofibers of esterified hyaluronan (HA-Bn/T) are developed to immobilize the hydrophobic antibacterial drug tetracycline by π-π stacking interaction. Dopamine-modified hyaluronan and HA-Bn/T are employed simultaneously to stabilize the structure of collagen-based hydrogel by chemically interweaving the collagen fibril network and decreasing the rate of collagen degradation. This renders it injectable for in situ gelation, with suitable skin adhesion properties and long-lasting drug release capability. This hybridized interwoven hydrogel promotes the proliferation and migration of L929 cells and vascularization in vitro. It presents satisfactory antibacterial ability against Staphylococcus aureus and Escherichia coli. The structure also retains the functional protein environment provided by collagen fiber, inhibits the bacterial environment of infected wounds, and modulates local inflammation, resulting in neovascularization, collagen deposition, and partial follicular regeneration. This strategy offers a new solution for infected wound healing.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Ácido Hialurônico/química , Adesivos , Cicatrização , Colágeno/farmacologia , Tetraciclina , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Escherichia coli
3.
J Neurooncol ; 163(1): 71-82, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37173511

RESUMO

PURPOSE: Classification and grading of central nervous system (CNS) tumours play a critical role in the clinic. When WHO CNS5 simplifies the histopathology diagnosis and places greater emphasis on molecular pathology, artificial intelligence (AI) has been widely used to meet the increased need for an automatic histopathology scheme that could liberate pathologists from laborious work. This study was to explore the diagnosis scope and practicality of AI. METHODS: A one-stop Histopathology Auxiliary System for Brain tumours (HAS-Bt) is introduced based on a pipeline-structured multiple instance learning (pMIL) framework developed with 1,385,163 patches from 1038 hematoxylin and eosin (H&E) slides. The system provides a streamlined service including slide scanning, whole-slide image (WSI) analysis and information management. A logical algorithm is used when molecular profiles are available. RESULTS: The pMIL achieved an accuracy of 0.94 in a 9-type classification task on an independent dataset composed of 268 H&E slides. Three auxiliary functions are developed and a built-in decision tree with multiple molecular markers is used to automatically formed integrated diagnosis. The processing efficiency was 443.0 s per slide. CONCLUSION: HAS-Bt shows outstanding performance and provides a novel aid for the integrated neuropathological diagnostic workflow of brain tumours using CNS 5 pipeline.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Humanos , Algoritmos , Aprendizado de Máquina Supervisionado , Organização Mundial da Saúde
4.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108186

RESUMO

Lesioned tissue requires synchronous control of disease and regeneration progression after surgery. It is necessary to develop therapeutic and regenerative scaffolds. Here, hyaluronic acid (HA) was esterified with benzyl groups to prepare hyaluronic acid derivative (HA-Bn) nanofibers via electrospinning. Electrospun membranes with average fiber diameters of 407.64 ± 124.8 nm (H400), 642.3 ± 228.76 nm (H600), and 841.09 ± 236.86 nm (H800) were obtained by adjusting the spinning parameters. These fibrous membranes had good biocompatibility, among which the H400 group could promote the proliferation and spread of L929 cells. Using the postoperative treatment of malignant skin melanoma as an example, the anticancer drug doxorubicin (DOX) was encapsulated in nanofibers via hybrid electrospinning. The UV spectroscopy of DOX-loaded nanofibers (HA-DOX) revealed that DOX was successfully encapsulated, and there was a π-π interaction between aromatic DOX and HA-Bn. The drug release profile confirmed the sustained release of about 90%, achieved within 7 days. In vitro cell experiments proved that the HA-DOX nanofiber had a considerable inhibitory effect on B16F10 cells. Therefore, the HA-Bn electrospun membrane could facilitate the potential regeneration of injured skin tissues and be incorporated with drugs to achieve therapeutic effects, offering a powerful approach to developing therapeutic and regenerative biomaterial.


Assuntos
Antineoplásicos , Nanofibras , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Ácido Hialurônico/química , Nanofibras/química , Doxorrubicina/farmacologia , Doxorrubicina/química
5.
J Inflamm Res ; 17: 2951-2958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764500

RESUMO

Objective: To investigate the correlation between the levels of serum lipopolysaccharide (LPS), nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase 1 (HO-1) and cognitive impairment in patients with obstructive sleep apnoea (OSA). Methods: Serum LPS, Nrf2, HO-1 levels and cognitive impairment were measured using the Montreal Cognitive Assessment (MoCA) score in 56 patients in the "severe" group, 67 patients in the "mild-to-moderate" group and 100 healthy people in the "control" group. The differences in general conditions and serological indexes between the three groups were compared, the correlation between the MoCA scores and the serological indexes was explored and the independent predictors of the MoCA scores were analysed. Results: Serum LPS, Nrf2 and HO-1 levels were higher in the severe group than in the mild-to-moderate group and the control group (p < 0.05). A total of 71 patients with OSA had combined cognitive impairment, accounting for 57.7%, and the MoCA scores were lower in the severe group than in the mild-to-moderate group and the control group (p = 0.018). Serum LPS, Nrf2 and HO-1 levels were significantly higher in the severe group and mild-to-moderate group than in the control group (p < 0.05) and were negatively correlated with the MoCA scores. Lipopolysaccharide (p < 0.001) and HO-1 (p = 0.002) could be considered independent predictors of the MoCA score. Conclusion: Serum LPS and HO-1 levels are closely related to cognitive impairment in patients with OSA and have potential clinical value in the diagnosis.

6.
Nanoscale ; 16(24): 11762-11773, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38869001

RESUMO

Nanohydroxyapatite (nHAp) has attracted significant attention for its tumor suppression and tumor microenvironment modulation capabilities. However, a strong tendency to aggregate greatly affects its anti-tumor efficiency. To address this issue, a hydrogel platform consisting of thiolated hyaluronic acid (HA-SH) modified nanohydroxyapatite (nHAp-HA) and HA-SH was developed for sustained delivery of nHAp for melanoma therapy. The hydrophilic and negatively charged HA-SH significantly improved the size dispersion and stability of nHAp in aqueous media while conferring nHAp targeting effects. Covalent sulfhydryl self-cross-linking between HA-SH and nHAp-HA groups ensured homogeneous dispersion of nHAp in the matrix material. Meanwhile, the modification of HA-SH conferred the targeting properties of nHAp and enhanced cellular uptake through the HA/CD44 receptor. The hydrogel platform could effectively reduce the aggregation of nHAp and release nHAp in a sustained and orderly manner. Antitumor experiments showed that the modified nHAp-HA retained the tumor cytotoxicity of nHAp in vitro and inhibited the growth of highly malignant melanomas up to 78.6% while being able to induce the differentiation of macrophages to the M1 pro-inflammatory and antitumor phenotype. This study will broaden the application of nanohydroxyapatite in tumor therapy.


Assuntos
Durapatita , Ácido Hialurônico , Hidrogéis , Melanoma , Durapatita/química , Durapatita/farmacologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Linhagem Celular Tumoral , Humanos , Receptores de Hialuronatos/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Nanopartículas/química , Células RAW 264.7
7.
Adv Healthc Mater ; 13(12): e2303600, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38303119

RESUMO

Bone regenerative scaffolds with a bionic natural bone hierarchical porous structure provide a suitable microenvironment for cell migration and proliferation. Here, a bionic scaffold (DP-PLGA/HAp) with directional microchannels is prepared by combining 3D printing and directional freezing technology. The 3D printed framework provides structural support for new bone tissue growth, while the directional pore embedded in the scaffolds provides an express lane for cell migration and nutrition transport, facilitating cell growth and differentiation. The hierarchical porous scaffolds achieve rapid infiltration and adhesion of bone marrow mesenchymal stem cells (BMSCs) and improve the expression of osteogenesis-related genes. The rabbit cranial defect experiment presents significant new bone formation, demonstrating that DP-PLGA/HAp offers an effective means to guide cranial bone regeneration. The combination of 3D printing and directional freezing technology might be a promising strategy for developing bone regenerative biomaterials.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , Osteogênese , Impressão Tridimensional , Alicerces Teciduais , Regeneração Óssea/fisiologia , Animais , Coelhos , Alicerces Teciduais/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Porosidade , Diferenciação Celular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Engenharia Tecidual/métodos , Proliferação de Células , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Durapatita/química
8.
J Mater Chem B ; 12(9): 2282-2293, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38323909

RESUMO

Skin has a protein microenvironment dominated by functional collagen fibers, while oxidative stress caused by injury can greatly slow down the progress of wound healing. Here, methacrylated dopamine was incorporated into methacrylated silk fibroin molecule chains to develop an injectable hydrogel with photocuring properties for constructing an antioxidant skin protein microenvironment. This silk fibroin-based hydrogel (SF-g-SDA) showed good tensile and adhesion properties for adapting to the wound shape and skin movement, exhibited stable mechanical properties, good biodegradability and cytocompatibility, and promoted cell adhesion and vascularization in vitro. In addition, its phenolic hydroxyl-mediated antioxidant properties effectively protected cells from damage caused by oxidative stress and supported normal cellular life activities. In animal experiments, SF-g-SDA achieved better skin repair effects in comparison to commercial Tegaderm™ in vivo, showing its ability to accelerate wound healing, improve collagen deposition and alignment in newly fabricated tissues, and promote neovascularization and hair follicle formation. These experimental results indicated that the SF-g-SDA hydrogel is a promising wound dressing.


Assuntos
Fibroínas , Animais , Fibroínas/farmacologia , Antioxidantes/farmacologia , Hidrogéis/farmacologia , Cicatrização , Colágeno/metabolismo
9.
J Colloid Interface Sci ; 671: 312-324, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38815368

RESUMO

The skin has a multilayered structure, and deep-seated injuries are exposed to external microbial invasion and in vivo microenvironmental destabilization. Here, a bilayer bionic skin scaffold (Bilayer SF) was developed based on methacrylated sericin protein to mimic the skin's multilayered structure and corresponding functions. The outer layer (SF@TA), which mimics the epidermal layer, was endowed with the function of resisting external bacterial and microbial invasion using a small pore structure and bio-crosslinking with tannic acid (TA). The inner layer (SF@DA@Gel), which mimics the dermal layer, was used to promote cellular growth using a large pore structure and introducing dopamine (DA) to regulate the wound microenvironment. This Bilayer SF showed good mechanical properties and structural stability, satisfactory antioxidant and promote cell proliferation and migration abilities. In vitro studies confirmed the antimicrobial properties of the outer layer and the pro-angiogenic ability of the inner layer. In vivo animal studies demonstrated that the bilayer scaffolds promoted collagen deposition, neovascularization, and marginal hair follicle formation, which might be a promising new bionic skin scaffold.


Assuntos
Proliferação de Células , Hidrogéis , Neovascularização Fisiológica , Pele , Porosidade , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Pele/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Humanos , Camundongos , Alicerces Teciduais/química , Sericinas/química , Sericinas/farmacologia , Propriedades de Superfície , Movimento Celular/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Angiogênese
10.
J Mater Chem B ; 11(18): 4131-4142, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114495

RESUMO

Designing a smart hydrogel to accelerate skin tissue regeneration at wound sites and restore the tissue function is highly desirable in clinical applications. In this study, a series of hydrogels with promising antioxidative and antibacterial traits based on recombinant human collagen type III (rhCol III), which is an emerging biomaterial, and chitosan (CS) were fabricated. The rhCol III-CS hydrogel could realize rapid gelation at wound locations and completely cover irregular wounds. Additionally, the hydrogel facilitated the proliferation and migration of cells and showed potent antibacterial efficacy against both strains, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. Significantly, the rhCol III-CS2 hydrogel increased the deposition of collagen, thereby accelerating full-thickness wound healing. Collectively, this bioinspired hydrogel was a promising multifunctional dressing to reconfigure the damaged tissue without additional drugs, exogenous cytokines, or cells, providing an effective strategy for the repair and regeneration of skin wounds.


Assuntos
Quitosana , Hidrogéis , Humanos , Hidrogéis/farmacologia , Quitosana/farmacologia , Antioxidantes/farmacologia , Colágeno Tipo III , Staphylococcus aureus , Escherichia coli , Cicatrização , Antibacterianos/farmacologia
11.
Mater Horiz ; 10(8): 3114-3123, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37218586

RESUMO

Living probiotics secrete bioactive substances to accelerate wound healing, but the clinical application of antibiotics inhibits the survival of probiotics. Inspired by the chelation of tannic acid and ferric ions, we developed a metal-phenolic self-assembly shielded probiotic (Lactobacillus reuteri, L. reuteri@FeTA) to prevent interference from antibiotics. Here, a superimposing layer was formed on the surface of L. reuteri to adsorb and inactivate antibiotics. These shielded probiotics were loaded into an injectable hydrogel (Gel/L@FeTA) formed by carboxylated chitosan and oxidized hyaluronan. The Gel/L@FeTA aided the survival of probiotics and supported the continuous secretion of lactic acid to perform biological functions in an environment containing gentamicin. Furthermore, the Gel/L@FeTA hydrogels presented a better performance than the Gel/L in inflammatory regulation, angiogenesis, and tissue regeneration both in vitro and in vivo in the presence of antibiotics. Hence, a new method for designing probiotic-based biomaterials for clinical wound management is provided.


Assuntos
Limosilactobacillus reuteri , Probióticos , Hidrogéis , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Materiais Biocompatíveis , Probióticos/farmacologia , Probióticos/uso terapêutico
12.
Adv Sci (Weinh) ; 10(13): e2300038, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905235

RESUMO

Nanostructured biomaterials that replicate natural bone architecture are expected to facilitate bone regeneration. Here, nanohydroxyapatite (nHAp) with vinyl surface modification is acquired by silicon-based coupling agent and photointegrated with methacrylic anhydride-modified gelatin to manufacture a chemically integrated 3D-printed hybrid bone scaffold (75.6 wt% solid content). This nanostructured procedure significantly increases its storage modulus by 19.43-fold (79.2 kPa) to construct a more stable mechanical structure. Furthermore, biofunctional hydrogel with biomimetic extracellular matrix is anchored onto the filament of 3D-printed hybrid scaffold (HGel-g-nHAp) by polyphenol-mediated multiple chemical reactions, which contributes to initiate early osteogenesis and angiogenesis by recruiting endogenous stem cells in situ. Significant ectopic mineral deposition is also observed in subcutaneously implanted nude mice with storage modulus enhancement of 25.3-fold after 30 days. Meanwhile, HGel-g-nHAp realizes substantial bone reconstruction in the rabbit cranial defect model, achieving 61.3% breaking load strength and 73.1% bone volume fractions in comparison to natural cranium 15 weeks after implantation. This optical integration strategy of vinyl modified nHAp provides a prospective structural design for regenerative 3D-printed bone scaffold.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Camundongos , Animais , Coelhos , Camundongos Nus , Estudos Prospectivos , Alicerces Teciduais/química , Impressão Tridimensional
13.
iScience ; 26(11): 108041, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37876818

RESUMO

Accurate pathological classification and grading of gliomas is crucial in clinical diagnosis and treatment. The application of deep learning techniques holds promise for automated histological pathology diagnosis. In this study, we collected 733 whole slide images from four medical centers, of which 456 were used for model training, 150 for internal validation, and 127 for multi-center testing. The study includes 5 types of common gliomas. A subtask-guided multi-instance learning image-to-label training pipeline was employed. The pipeline leveraged "patch prompting" for the model to converge with reasonable computational cost. Experiments showed that an overall accuracy of 0.79 in the internal validation dataset. The performance on the multi-center testing dataset showed an overall accuracy to 0.73. The findings suggest a minor yet acceptable performance decrease in multi-center data, demonstrating the model's strong generalizability and establishing a robust foundation for future clinical applications.

16.
Org Lett ; 11(1): 241-4, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19053715

RESUMO

Styrene has been hydroformylated to the linear aldehyde with surprisingly high regioselectivity (l/b up to 22 for styrene) by using Rh complex with tetraphosphorus ligand. To the best of our knowledge, this is the highest linear regioselectivity reported for the hydroformylation of styrene and its derivatives. This protocol is in sharp contrast to other processes that favor producing branched aldehyde (typically >95% branched for most bidentate systems).


Assuntos
Aldeídos/síntese química , Compostos Organometálicos/química , Compostos Organofosforados/química , Ródio/química , Estirenos/química , Aldeídos/química , Catálise , Ligantes , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA