Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171501, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447724

RESUMO

Understanding how nutrient addition affects the tree growth is critical for assessing forest ecosystem function and processes, especially in the context of increased nitrogen (N) and phosphorus (P) deposition. Subtropical forests are often considered N-rich and P-poor ecosystems, but few existing studies follow the traditional "P limitation" paradigm, possibly due to differences in nutrient requirements among trees of different size classes. We conducted a three-year fertilization experiment with four treatments (Control, N-treatment, P-treatment, and NP-treatment). We measured soil nutrient availability, leaf stoichiometry, and relative growth rate (RGR) of trees across three size classes (small, medium and large) in 64 plots. We found that N and NP-treatments increased the RGR of large trees. P-treatment increased the RGR of small trees. RGR was mainly affected by N addition, the total effect of P addition was only 10 % of that of N addition. The effect of nutrient addition on RGR was mainly regulated by leaf stoichiometry. This study reveals that nutrient limitation is size dependent, indicating that continuous unbalanced N and P deposition will inhibit the growth of small trees and increase the instability of subtropical forest stand structure, but may improve the carbon sink function of large trees.


Assuntos
Ecossistema , Árvores , Florestas , Nitrogênio/análise , Fósforo/química , Solo/química
2.
Sci China Life Sci ; 67(4): 817-828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217639

RESUMO

The Convention on Biological Diversity seeks to conserve at least 30% of global land and water areas by 2030, which is a challenge but also an opportunity to better preserve biodiversity, including flowering plants (angiosperms). Herein, we compiled a large database on distributions of over 300,000 angiosperm species and the key functional traits of 67,024 species. Using this database, we constructed biodiversity-environment models to predict global patterns of taxonomic, phylogenetic, and functional diversity in terrestrial angiosperms and provide a comprehensive mapping of the three diversity facets. We further evaluated the current protection status of the biodiversity centers of these diversity facets. Our results showed that geographical patterns of the three facets of plant diversity exhibited substantial spatial mismatches and nonoverlapping conservation priorities. Idiosyncratic centers of functional diversity, particularly of herbaceous species, were primarily distributed in temperate regions and under weaker protection compared with other biodiversity centers of taxonomic and phylogenetic facets. Our global assessment of multifaceted biodiversity patterns and centers highlights the insufficiency and unbalanced conservation among the three diversity facets and the two growth forms (woody vs. herbaceous), thus providing directions for guiding the future conservation of global plant diversity.


Assuntos
Magnoliopsida , Filogenia , Biodiversidade , Plantas , Ecossistema , Conservação dos Recursos Naturais
3.
Sci Total Environ ; 783: 146896, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33866165

RESUMO

Elevational range shifts of mountain species in response to climate change have profound impact on mountain biodiversity. However, current evidence indicates great controversies in the direction and magnitude of elevational range shifts across species and regions. Here, using historical and recent occurrence records of 83 plant species in a subtropical mountain, Mt. Gongga (Sichuan, China), we evaluated changes in species elevation centroids and limits (upper and lower) along elevational gradients, and explored the determinants of elevational changes. We found that 63.9% of the species shifted their elevation centroids upward, while 22.9% shifted downward. The changes in centroid elevations and range size were more strongly correlated with changes in lower than upper limits of species elevational ranges. The magnitude of centroid elevation shifts was larger than predicted by climate warming and precipitation changes. Our results show complex changes in species elevational distributions and range sizes in Mt. Gongga, and that climate change, species traits and climate adaptation of species all influenced their elevational movement. As Mt. Gongga is one of the global biodiversity hotspots, and contains many threatened plant species, these findings provide support to future conservation planning.


Assuntos
Altitude , Mudança Climática , Biodiversidade , China , Ecossistema , Plantas
4.
Ecol Evol ; 9(17): 9586-9596, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31534677

RESUMO

The mechanisms underlying elevation patterns in species and phylogenetic diversity remain a central issue in ecology and are vital for effective biodiversity conservation in the mountains. Gongga Mountain, located in the southeastern Qinghai-Tibetan Plateau, represents one of the longest elevational gradients (ca. 6,500 m, from ca. 1,000 to 7,556 m) in the world for studying species diversity patterns. However, the elevational gradient and conservation of plant species diversity and phylogenetic diversity in this mountain remain poorly studied. Here, we compiled the elevational distributions of 2,667 native seed plant species occurring in Gongga Mountain, and estimated the species diversity, phylogenetic diversity, species density, and phylogenetic relatedness across ten elevation belts and five vegetation zones. The results indicated that species diversity and phylogenetic diversity of all seed plants showed a hump-shaped pattern, peaking at 1,800-2,200 m. Species diversity was significantly correlated with phylogenetic diversity and species density. The floras in temperate coniferous broad-leaved mixed forests, subalpine coniferous forests, and alpine shrublands and meadows were significantly phylogenetically clustered, whereas the floras in evergreen broad-leaved forests had phylogenetically random structure. Both climate and human pressure had strong correlation with species diversity, phylogenetic diversity, and phylogenetic structure of seed plants. Our results suggest that the evergreen broad-leaved forests and coniferous broad-leaved mixed forests at low to mid elevations deserve more conservation efforts. This study improves our understanding on the elevational gradients of species and phylogenetic diversity and their determinants and provides support for improvement of seed plant conservation in Gongga Mountain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA