Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474144

RESUMO

In tissue engineering (TE), the support structure (scaffold) plays a key role necessary for cell adhesion and proliferation. The protein constituents of the extracellular matrix (ECM), such as collagen, its derivative gelatine, and elastin, are the most attractive materials as possible scaffolds. To improve the modest mechanical properties of gelatine, a strategy consists of crosslinking it, as naturally occurs for collagen, which is stiffened by the oxidative action of lysyl oxidase (LO). Here, a novel protocol to crosslink gelatine has been developed, not using the commonly employed crosslinkers, but based on the formation of imine bonds or on aldolic condensation reactions occurring between gelatine and properly synthesized copolymers containing amine residues via LO-mediated oxidation. Particularly, we first synthesized and characterized an amino butyl styrene monomer (5), its copolymers with dimethylacrylamide (DMAA), and its terpolymer with DMAA and acrylic acid (AA). Three acryloyl amidoamine monomers (11a-c) and their copolymers with DMAA were then prepared. A methacrolein (MA)/DMAA copolymer already possessing the needed aldehyde groups was finally developed to investigate the relevance of LO in the crosslinking process. Oxidation tests of amine copolymers with LO were performed to identify the best substrates to be used in experiments of gelatine reticulation. Copolymers obtained with 5, 11b, and 11c were excellent substrates for LO and were employed with MA/DMAA copolymers in gelatine crosslinking tests in different conditions. Among the amine-containing copolymers, that obtained with 5 (CP5/DMMA-43.1) afforded a material (M21) with the highest crosslinking percentage (71%). Cytotoxicity experiments carried out on two cell lines (IMR-32 and SH SY5Y) with the analogous (P5) of the synthetic constituent of M21 (CP5/DMAA) had evidenced no significant reduction in cell viability, but proliferation promotion, thus establishing the biocompatibility of M21 and the possibility to develop it as a new scaffold for TE, upon further investigations.


Assuntos
Aminas , Gelatina , Gelatina/química , Aldeídos , Colágeno/química , Polímeros
2.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732231

RESUMO

Regenerative medicine is an interdisciplinary field aiming at restoring pathologically damaged tissues and whole organs by cell transplantation in combination with proper supporting scaffolds. Gelatine-based ones are very attractive due to their biocompatibility, rapid biodegradability, and lack of immunogenicity. Gelatine-based composite hydrogels, containing strengthening agents to improve their modest mechanical properties, have been demonstrated to act as extracellular matrices (ECMs), thus playing a critical role in "organ manufacturing". Inspired by the lysyl oxidase (LO)-mediated process of crosslinking, which occurs in nature to reinforce collagen, we have recently developed a versatile protocol to crosslink gelatine B (Gel B) in the presence or absence of LO, using properly synthesized polystyrene- and polyacrylic-based copolymers containing the amine or aldehyde groups needed for crosslinking reactions. Here, following the developed protocol with slight modifications, we have successfully crosslinked Gel B in different conditions, obtaining eight out of nine compounds in high yield (57-99%). The determined crosslinking degree percentage (CP%) evidenced a high CP% for compounds obtained in presence of LO and using the styrenic amine-containing (CP5/DMAA) and acrylic aldehyde-containing (CPMA/DMAA) copolymers as crosslinking agents. ATR-FTIR analyses confirmed the chemical structure of all compounds, while optical microscopy demonstrated cavernous, crater-like, and labyrinth-like morphologies and cavities with a size in the range 15-261 µm. An apparent density in the range 0.10-0.45 g/cm3 confirmed the aerogel-like structure of most samples. Although the best biodegradation profile was observed for the sample obtained using 10% CP5/DMAA (M3), high swelling and absorption properties, high porosity, and good biodegradation profiles were also observed for samples obtained using the 5-10% CP5/DMAA (M4, 5, 6) and 20% CPMA/DMAA (M9) copolymers. Collectively, in this work of synthesis and physicochemical characterization, new aerogel-like composites have been developed and, based on their characteristics, which fit well within the requirements for TE, five candidates (M3, M4, M5, M6, and M9) suitable for future biological experiments on cell adhesion, infiltration and proliferation, to confirm their effective functioning, have been identified.


Assuntos
Materiais Biocompatíveis , Gelatina , Hidrogéis , Medicina Regenerativa , Alicerces Teciduais , Gelatina/química , Alicerces Teciduais/química , Medicina Regenerativa/métodos , Materiais Biocompatíveis/química , Hidrogéis/química , Hidrogéis/síntese química , Humanos , Engenharia Tecidual/métodos , Reagentes de Ligações Cruzadas/química
3.
Int J Mol Sci ; 25(18)2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39337557

RESUMO

Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer with a poor prognosis. Drug-induced secondary tumorigenesis and the emergency of drug resistance worsen an already worrying scenario, thus rendering urgent the development of new treatments not dealing with mutable cellular processes. Triphenyl phosphonium salts (TPPSs), in addiction to acting as cytoplasmic membrane disruptors, are reported to be mitochondria-targeting compounds, exerting anticancer effects mainly by damaging their membranes and causing depolarization, impairing mitochondria functions and their DNA, triggering oxidative stress (OS), and priming primarily apoptotic cell death. TPP-based bola amphiphiles are capable of self-forming nanoparticles (NPs) with enhanced biological properties, as commonly observed for nanomaterials. Already employed in several other biomedical applications, the per se selective potent antibacterial effects of a TPP bola amphiphile have only recently been demonstrated on 50 multidrug resistant (MDR) clinical superbugs, as well as its exceptional and selective anticancer properties on sensitive and MDR neuroblastoma cells. Here, aiming at finding new molecules possibly developable as new treatments for counteracting CMM, the effects of this TPP-based bola amphiphile (BPPB) have been investigated against two BRAF mutants CMM cell lines (MeOV and MeTRAV) with excellent results (even IC50 = 49 nM on MeOV after 72 h treatment). With these findings and considering the low cytotoxicity of BPPB against different mammalian non-tumoral cell lines and red blood cells (RBCs, selectivity indexes up to 299 on MeOV after 72 h treatment), the possible future development of BPPB as topical treatment for CMM lesions was presumed. With this aim, a biodegradable hyaluronic acid (HA)-based hydrogel formulation (HA-BPPB-HG) was prepared without using any potentially toxic crosslinking agents simply by dispersing suitable amounts of the two ingredients in water and sonicating under gentle heating. HA-BPPB-HA was completely characterized, with promising outcomes such as high swelling capability, high porosity, and viscous elastic rheological behavior.


Assuntos
Proliferação de Células , Ácido Hialurônico , Hidrogéis , Melanoma , Proteínas Proto-Oncogênicas B-raf , Espécies Reativas de Oxigênio , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Mutação , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia
4.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000290

RESUMO

The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.


Assuntos
Antibacterianos , Oxirredução , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Animais , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Biofilmes/efeitos dos fármacos
5.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372971

RESUMO

The awareness of the existence of plant bioactive compounds, namely, phytochemicals (PHYs), with health properties is progressively expanding. Therefore, their massive introduction in the normal diet and in food supplements and their use as natural therapeutics to treat several diseases are increasingly emphasized by several sectors. In particular, most PHYs possessing antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant properties have been isolated from plants. Additionally, their secondary modification with new functionalities to further improve their intrinsic beneficial effects has been extensively investigated. Unfortunately, although the idea of exploiting PHYs as therapeutics is amazing, its realization is far from simple, and the possibility of employing them as efficient clinically administrable drugs is almost utopic. Most PHYs are insoluble in water, and, especially when introduced orally, they hardly manage to pass through physiological barriers and scarcely reach the site of action in therapeutic concentrations. Their degradation by enzymatic and microbial digestion, as well as their rapid metabolism and excretion, strongly limits their in vivo activity. To overcome these drawbacks, several nanotechnological approaches have been used, and many nanosized PHY-loaded delivery systems have been developed. This paper, by reporting various case studies, reviews the foremost nanosuspension- and nanoemulsion-based techniques developed for formulating the most relevant PHYs into more bioavailable nanoparticles (NPs) that are suitable or promising for clinical application, mainly by oral administration. In addition, the acute and chronic toxic effects due to exposure to NPs reported so far, the possible nanotoxicity that could result from their massive employment, and ongoing actions to improve knowledge in this field are discussed. The state of the art concerning the actual clinical application of both PHYs and the nanotechnologically engineered PHYs is also reviewed.


Assuntos
Antioxidantes , Nanopartículas , Antioxidantes/farmacologia , Anti-Inflamatórios/farmacologia , Suplementos Nutricionais , Compostos Fitoquímicos , Nanopartículas/química , Sistemas de Liberação de Medicamentos/métodos
6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674627

RESUMO

Here, to develop new topical antibacterial formulations to treat staphylococcal infections, two pyrazoles (3c and 4b) previously reported as antibacterial agents, especially against staphylococci, were formulated as hydrogels (R1-HG-3c and R1HG-4b) using a cationic polystyrene-based resin (R1) and here synthetized and characterized as gelling agents. Thanks to the high hydrophilicity, high-level porosity, and excellent swelling capabilities of R1, R1HG-3c and R1HG-4b were achieved with an equilibrium degree of swelling (EDS) of 765% (R1HG-3c) and 675% (R1HG-4b) and equilibrium water content (EWC) of 88% and 87%, respectively. The chemical structure of soaked and dried gels was investigated by PCA-assisted attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy, while their morphology was investigated by optical microscopy. Weight loss studies were carried out with R1HG-3c and R1HG-4b to investigate their water release profiles and the related kinetics, while their stability was evaluated over time both by monitoring their inversion properties to detect possible impairments of the 3D network and by PCA-assisted ATR-FTIR spectroscopy to detect possible structural changes. The flow and dynamic rheological characterization of the gels was assessed by determining their viscosity vs. shear rate, applying the Cross rheological equation to achieve the curves of shear stress vs. shear rate, and carrying out amplitude and frequency sweep experiments. Finally, their content in NH3+ groups was determined by potentiometric titrations. Due to their favorable physicochemical characteristic and the antibacterial effects of 3c and 4b possibly improved by the cationic R1, the pyrazole-enriched gels reported here could represent new weapons to treat severe skin and wound infections sustained by MDR bacteria of staphylococcal species.


Assuntos
Hidrogéis , Poliestirenos , Hidrogéis/química , Antibacterianos/farmacologia , Antibacterianos/química , Excipientes , Composição de Medicamentos , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769270

RESUMO

Water pollution from dyes is harmful to the environment, plants, animals, and humans and is one of the most widespread problems afflicting people throughout the world. Adsorption is a widely used method to remove contaminants derived from the textile industry, food colorants, printing, and cosmetic manufacturing from water. Here, aiming to develop new low-cost and up-scalable adsorbent materials for anionic dye remediation and water decontamination by electrostatic interactions, two cationic resins (R1 and R2) were prepared. In particular, they were obtained by copolymerizing 4-ammonium methyl and ethyl styrene monomers (M1 and M2) with dimethylacrylamide (DMAA), using N-(2-acryloylamino-ethyl)-acrylamide (AAEA) as cross-linker. Once characterized by several analytical techniques, upon their dispersion in an excess of water, R1 and R2 provided the R1- and R2-based hydrogels (namely R1HG and R2HG) with equilibrium degrees of swelling (EDS) of 900% and 1000% and equilibrium water contents (EWC) of 90 and 91%, respectively. By applying Cross' rheology equation to the data of R1HG and R2HG's viscosity vs. shear rate, it was established that both hydrogels are shear thinning fluids with pseudoplastic/Bingham plastic behavior depending on share rate. The equivalents of -NH3+ groups, essential for the electrostatic-based absorbent activity, were estimated by the method of Gaur and Gupta on R1 and R2 and by potentiometric titrations on R1HG and R2HG. In absorption experiments in bulk, R1HG and R2HG showed high removal efficiency (97-100%) towards methyl orange (MO) azo dye, fluorescein (F), and their mixture (MOF). Using F or MO solutions (pH = 7.5, room temperature), the maximum absorption was 47.8 mg/g in 90' (F) and 47.7 mg/g in 120' (MO) for R1, while that of R2 was 49.0 mg/g in 20' (F) and 48.5 mg/g in 30' (MO). Additionally, R1HG and R2HG-based columns, mimicking decontamination systems by filtration, were capable of removing MO, F, and MOF from water with a 100% removal efficiency, in different conditions of use. R1HG and R2HG represent low-cost and up-scalable column packing materials that are promising for application in industrial wastewater treatment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Bovinos , Animais , Corantes/química , Águas Residuárias , Poliestirenos , Hidrogéis , Compostos Azo/química , Cátions , Água , Fluoresceínas , Poluentes Químicos da Água/química , Adsorção , Cinética
8.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834475

RESUMO

Neuroblastoma (NB) is a childhood cancer, commonly treated with drugs, such as etoposide (ETO), whose efficacy is limited by the onset of resistance. Here, aiming at identifying new treatments for chemo-resistant NB, the effects of two synthesized imidazo-pyrazoles (IMPs) (4G and 4I) were investigated on ETO-sensitive (HTLA-230) and ETO-resistant (HTLA-ER) NB cells, detecting 4I as the more promising compound, that demonstrated IC50 values lower than those of ETO on HTLA ER. Therefore, to further improve the activity of 4I, we developed 4I-loaded palmitic acid (PA) and polystyrene-based (P5) cationic nanoparticles (P5PA-4I NPs) with high drug loading (21%) and encapsulation efficiency (97%), by a single oil-in-water emulsification technique. Biocompatible PA was adopted as an emulsion stabilizer, while synthesized P5 acted as an encapsulating agent, solubilizer and hydrophilic-lipophilic balance (HLB) improver. Optic microscopy and cytofluorimetric analyses were performed to investigate the micromorphology, size and complexity distributions of P5PA-4I NPs, which were also structurally characterized by chemometric-assisted Fourier transform infrared spectroscopy (FTIR). Potentiometric titrations allowed us to estimate the milliequivalents of PA and basic nitrogen atoms present in NPs. P5PA-4I NPs afforded dispersions in water with excellent buffer capacity, essential to escape lysosomal degradation and promote long residence time inside cells. They were chemically stable in an aqueous medium for at least 40 days, while in dynamic light scattering (DLS) analyses, P5PA-4I showed a mean hydrodynamic diameter of 541 nm, small polydispersity (0.194), and low positive zeta potentials (+8.39 mV), assuring low haemolytic toxicity. Biological experiments on NB cells, demonstrated that P5PA-4I NPs induced ROS-dependent cytotoxic effects significantly higher than those of pristine 4I, showing a major efficacy compared to ETO in reducing cell viability in HTLA-ER cells. Collectively, this 4I-based nano-formulation could represent a new promising macromolecular platform to develop a new delivery system able to increase the cytotoxicity of the anticancer drugs.


Assuntos
Antineoplásicos , Nanopartículas , Neuroblastoma , Humanos , Criança , Portadores de Fármacos/química , Ácido Palmítico/farmacologia , Poliestirenos , Etoposídeo , Antineoplásicos/farmacologia , Neuroblastoma/tratamento farmacológico , Nanopartículas/química , Água
9.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499417

RESUMO

Objects touched by patients and healthcare workers in hospitals may harbor pathogens, including multi-drug resistant (MDR) staphylococci, enterococci (VRE), Escherichia coli, Acinetobacter, and Pseudomonas species. Medical devices contaminated by these pathogens may also act as a source of severe and difficult-to-treat human infections, thus becoming a critical public health concern requiring urgent resolutions. To this end, we recently reported the bactericidal effects of a cationic copolymer (CP1). Here, aiming at developing a bactericidal formulation possibly to be used either for surfaces disinfection or to treat skin infections, CP1 was formulated as a hydrogel (CP1_1.1-Hgel). Importantly, even if not cross-linked, CP1 formed the gel upon simple dispersion in water, without requiring gelling agents or other additives which could be skin-incompatible or interfere with CP1 bactericidal effects in possible future topical applications. CP1_1.1-Hgel was characterized by attenuated-total-reflectance Fourier transform infrared (ATR-FTIR) and UV-Vis spectroscopy, as well as optic and scanning electron microscopy (OM and SEM) to investigate its chemical structure and morphology. Its stability was assessed by monitoring its inversion properties over time at room temperature, while its mechanical characteristics were assessed by rheological experiments. Dose-dependent cytotoxicity studies performed on human fibroblasts for 24 h with gel samples obtained by diluting CP_1.1-Hgel at properly selected concentrations established that the 3D network formation did not significantly affect the cytotoxic profile of CP1. Also, microbiologic investigations carried out on two-fold serial dilutions of CP1-gel confirmed the minimum inhibitory concentrations (MICs) previously reported for the not formulated CP1.Selectivity indices values up to 12 were estimated by the values of LD50 and MICs determined here on gel samples.


Assuntos
Antibacterianos , Hidrogéis , Humanos , Hidrogéis/farmacologia , Hidrogéis/química , Antibacterianos/farmacologia , Microscopia Eletrônica de Varredura , Fibroblastos , Testes de Sensibilidade Microbiana , Polímeros/farmacologia
10.
Molecules ; 27(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35684568

RESUMO

It is widely reported that N-(4-hydroxyphenyl)-retinamide or fenretinide (4-HPR), which is a synthetic amide of all-trans-retinoic acid (ATRA), inhibits in vitro several types of tumors, including cancer cell lines resistant to ATRA, at 1-10 µM concentrations. Additionally, studies in rats and mice have confirmed the potent anticancer effects of 4-HPR, without evidencing hemolytic toxicity, thus demonstrating its suitability for the development of a new chemo-preventive agent. To this end, the accurate determination of 4-HPR levels in tissues is essential for its pre-clinical training, and for the correct determination of 4-HPR and its metabolites by chromatography, N-(4-ethoxyphenyl)-retinamide (4-EPR) has been suggested as an indispensable internal standard. Unfortunately, only a consultable old patent reports the synthesis of 4-EPR, starting from dangerous and high-cost reagents and using long and tedious purification procedures. To the best of our knowledge, no article existed so far describing the specific synthesis of 4-EPR. Only two vendors worldwide supply 4-ERP, and its characterization was incomplete. Here, a scalable, operator-friendly, and one-step procedure to synthetize highly pure 4-EPR without purification work-up and in quantitative yield is reported. Additionally, a complete characterization of 4-EPR using all possible analytical techniques has been provided.


Assuntos
Antineoplásicos , Fenretinida , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Fenretinida/metabolismo , Fenretinida/farmacologia , Camundongos , Ratos , Tretinoína/análogos & derivados , Tretinoína/farmacologia
11.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298891

RESUMO

The genus Acinetobacter consists of Gram-negative obligate aerobic pathogens, including clinically relevant species, such as A. baumannii, which frequently cause hospital infections, affecting debilitated patients. The growing resistance to antimicrobial therapies shown by A. baumannii is reaching unacceptable levels in clinical practice, and there is growing concern that the serious conditions it causes may soon become incurable. New therapeutic possibilities are, therefore, urgently needed to circumvent this important problem. Synthetic cationic macromolecules, such as cationic antimicrobial peptides (AMPs), which act as membrane disrupters, could find application in these conditions. A lysine-modified cationic polyester-based dendrimer (G5-PDK), capable of electrostatically interacting with bacterial surfaces as AMPs do, has been synthesized and characterized here. Given its chemical structure, similar to that of a fifth-generation lysine containing dendrimer (G5K) with a different core, and previously found inactive against Gram-positive bacterial species and Enterobacteriaceae, the new G5-PDK was also ineffective on the species mentioned above. In contrast, it showed minimum inhibitory concentration values (MICs) lower than reported for several AMPs and other synthetic cationic compounds on Acinetobacter genus (3.2-12.7 µM). Time-kill experiments on A. baumannii, A. pittii, and A. ursingii ascertained the rapid bactericidal effects of G5-PDK, while subsequent bacterial regrowth supported its self-biodegradability.


Assuntos
Acinetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Dendrímeros/farmacologia , Lisina/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos
12.
Int J Mol Sci ; 22(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065133

RESUMO

Low-molecular-weight organic ammonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Unfortunately, short-term functionality and high toxicity limit their clinical application. On the contrary, the equivalent macromolecular ammonium salts, derived from the polymerization of monomeric ammonium salts, have demonstrated improved antibacterial potency, a lower tendency to develop resistance, higher stability, long-term activity, and reduced toxicity. A water-soluble non-quaternary copolymeric ammonium salt (P7) was herein synthetized by copolymerizing 2-methoxy-6-(4-vinylbenzyloxy)-benzylammonium hydrochloride monomer with N, N-di-methyl-acrylamide. The antibacterial activity of P7 was assessed against several multidrug-resistant (MDR) clinical isolates of both Gram-positive and Gram-negative species. Except for colistin-resistant Pseudomonas aeruginosa, most isolates were susceptible to P7, also including some Gram-negative bacteria with a modified charge in the external membrane. P7 showed remarkable antibacterial activity against isolates of Enterococcus, Staphylococcus, Acinetobacter, and Pseudomonas, and on different strains of Escherichia coli and Stenotrophomonas maltophylia, regardless of their antibiotic resistance. The lowest minimal inhibitory concentrations (MICs) observed were 0.6-1.2 µM and the minimal bactericidal concentrations (MBC) were frequently overlapping with the MICs. In 24-h time-kill and turbidimetric studies, P7 displayed a rapid non-lytic bactericidal activity. P7 could therefore represent a novel and potent tool capable of counteracting infections sustained by several bacteria that are resistant to the presently available antibiotics.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Compostos de Benzilamônio/química , Compostos de Benzilamônio/farmacologia , Polímeros , Antibacterianos/síntese química , Bactérias/efeitos dos fármacos , Compostos de Benzilamônio/síntese química , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Polimerização , Polímeros/química , Análise Espectral
13.
Drug Dev Ind Pharm ; 43(6): 917-924, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28076697

RESUMO

OBJECTIVE: The aim of this work was the development of mucoadhesive sublingual films, prepared using a casting method, for the administration of oxycodone. MATERIALS AND METHODS: A solvent casting method was employed to prepare the mucoadhesive films. A calibrated pipette was used to deposit single aliquots of different polymeric solutions on a polystyrene plate lid. Among the various tested polymers, hydroxypropylcellulose at low and medium molecular weight (HPC) and pectin at two different degrees of esterification (PC) were chosen for preparing solutions with good casting properties, capable of producing films suitable for mucosal application. RESULTS AND DISCUSSION: The obtained films showed excellent drug content uniformity and stability and rapid drug release, which, at 8 min, ranged from 60% to 80%. All films presented satisfactory mucoadhesive and mechanical properties, also confirmed by a test on healthy volunteers, who did not experience irritation or mucosa damages. Pectin films based on pectin at lower degrees of esterification have been further evaluated to study the influence of two different amounts of drug on the physicochemical properties of the formulation. A slight reduction in elasticity has been observed in films containing a higher drug dose; nevertheless, the formulation maintained satisfactory flexibility and resistance to elongation. CONCLUSIONS: HPC and PC sublingual films, obtained by a simple casting method, could be proposed to realize personalized hospital pharmacy preparations on a small scale.


Assuntos
Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/uso terapêutico , Oxicodona/administração & dosagem , Oxicodona/uso terapêutico , Administração Sublingual , Adulto , Composição de Medicamentos , Estabilidade de Medicamentos , Elasticidade , Excipientes , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal , Dor/tratamento farmacológico , Medicina de Precisão , Solubilidade , Solventes , Resistência à Tração , Adesivos Teciduais
14.
Pharmaceutics ; 16(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38794242

RESUMO

The development of numerous drugs is often arrested at clinical testing stages, due to their unfavorable biopharmaceutical characteristics. It is the case of fenretinide (4-HPR), a second-generation retinoid, that demonstrated promising in vitro cytotoxic activity against several cancer cell lines. Unfortunately, response rates in early clinical trials with 4-HPR did not confirm the in vitro findings, mainly due to the low bioavailability of the oral capsular formulation that was initially developed. Capsular 4-HPR provided variable and insufficient drug plasma levels attributable to the high hepatic first-pass effect and poor drug water solubility. To improve 4-HPR bioavailability, several approaches have been put forward and tested in preclinical and early-phase clinical trials, demonstrating generally improved plasma levels and minimal systemic toxicities, but also modest antitumor efficacy. The challenge is thus currently still far from being met. To redirect the diminished interest of pharmaceutical companies toward 4-HPR and promote its further clinical development, this manuscript reviewed the attempts made so far by researchers to enhance 4-HPR bioavailability. A comparison of the available data was performed, and future directions were proposed.

15.
Curr Drug Deliv ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39229999

RESUMO

INTRODUCTION/OBJECTIVES: The purpose of the study was to evaluate the suitability of mixed micelles prepared with D-α-tocopheryl polyethylene glycol succinate (TPGS) and 1,2- distearoyl-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-PEG) to encapsulate the poorly soluble anticancer drug fenretinide (4-HPR). METHODS: After assaying the solubilization ability of the surfactants by the equilibrium method, the micelles were prepared using the solvent casting technique starting from different 4-HPR:TPGS: DSPE-PEG w/w ratios. The resulting formulations were investigated for their stability under storage conditions and upon dilution, modelling the reaching of physiological concentrations after intravenous administration. The characterization of micelles included the determination of DL%, EE %, particle size distribution, Z-potential, and thermal analysis by DSC. The cytotoxicity studies were performed on HTLA-230 and SK-N-BE-2C neuroblastoma cells by the MTT essay. RESULTS: The colloidal dispersions showed a mean diameter of 12 nm, negative Zeta potential, and a narrow dimensional distribution. 4-HPR was formulated in the mixed micelles with an encapsulation efficiency of 88% and with an increment of the apparent solubility of 363-fold. The 4-HPR entrapment remained stable up to the surfactants' concentration of 2.97E-05 M. The loaded micelles exhibited a slow-release behaviour, with about 28% of the drug released after 24 h. On the most resistant SK-N-BE-2C cells, the encapsulated 4-HPR was significantly more active than free 4-HPR in reducing cell viability. CONCLUSION: Loaded micelles demonstrated their suitability as a new adjuvant tool potentially useful for the treatment of neuroblastoma.

16.
Gels ; 10(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38391437

RESUMO

Natural deep eutectic solvents (NaDES) represent a new generation of green, non-flammable solvents, useful as an efficient alternative to the well-known ionic liquids. They can be easily prepared and exhibit unexpected solubilizing power for lipophilic molecules, although those of a hydrophilic nature are mostly used. For their unique properties, they can be recommend for different cosmetic and pharmaceutical applications, ranging from sustainable extraction, obtaining ready-to-use ingredients, to the development of biocompatible drug delivery responsive systems. In the biomedical field, NaDES can be used as biopolymer modifiers, acting as delivery compounds also known as "therapeutic deep eutectic systems", being able to solubilize and stabilize different chemical and galenical formulations. The aim of this review is to give an overview of the current knowledge regarding natural deep eutectic solvents specifically applied in the cosmetic and pharmaceutical fields. The work could help to disclose new opportunities and challenges for their implementation not only as green alternative solvents but also as potential useful pathways to deliver bioactive ingredients in innovative formulations.

17.
Pharmaceutics ; 16(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675127

RESUMO

Liposomal amphotericin B (Ambisome®) is the gold standard for the treatment and prevention of fungal infections both in the adult and pediatric populations. The lyophilized dosage form has to be reconstituted and diluted by hospital staff, but its management can be challenging due to the spontaneous tendency of amphotericin B to form aggregates with different biological activity. In this study, the colloidal stability of the liposomes and the chemical stability of amphotericin B were investigated over time at storage conditions. Three liposomal formulations of amphotericin B at 4.0 mg/mL, 2.0 mg/mL, and 0.2 mg/mL were prepared and assayed for changes regarding the dimensional distribution, zeta potential, drug aggregation state, and onset of by-products. Our analyses highlighted that the most diluted formulation, kept at room temperature, showed the greatest changes in the aggregation state of the drug and accordingly the highest cytotoxicity. These findings are clinically relevant since the lower dosages are addressed to the more vulnerable patients. Therefore, the centralization of the dilution of AmBisome® at the pharmacy is of fundamental importance for assuring patient safety, and at the same time for reducing medication waste, as we demonstrated using the cost-saving analysis of drug expense per therapy carried out at the G. Gaslini children hospital.

18.
Nanomaterials (Basel) ; 14(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39330662

RESUMO

Neuroblastoma (NB) is a solid tumor occurring in infancy and childhood. Its high-risk form has currently a survival rate <50%, despite aggressive treatments. This worrying scenario is worsened by drug-induced secondary tumorigenesis and the emergency of drug resistance, calling for the urgent development of new extra-genomic treatments. Triphenyl phosphonium salts (TPPs) are mitochondria-targeting compounds that exert anticancer effects, impair mitochondria functions, and damage DNA at the same time. Despite several biochemical applications, TPP-based bola-amphiphiles self-assembling nanoparticles (NPs) in water have never been tested as antitumor agents. Here, with the aim of developing new antitumor devices to also counteract resistant forms of HR-NB, the anticancer effects of a TPP-based bola-amphiphile molecule have been investigated in vitro for the first time. To this end, we considered the previously synthesized and characterized sterically hindered quaternary phosphonium salt (BPPB). It embodies both the characteristics of mitochondria-targeting compounds and those of bola-amphiphiles. The anticancer effects of BPPB were assessed against HTLA-230 human stage-IV NB cells and their counterpart, which is resistant to etoposide (ETO), doxorubicin (DOX), and many other therapeutics (HTLA-ER). Very low IC50 values of 0.2 µM on HTLA-230 and 1.1 µM on HTLA-ER (538-fold lower than that of ETO) were already determined after 24 h of treatment. The very low cell viability observed after 24 h did not significantly differ from that observed for the longest exposure timing. The putative future inclusion of BPPB in a chemotherapeutic cocktail for HR-NB was assessed by investigating in vitro its cytotoxic effects against mammalian cell lines. These included monkey kidney cells (Cos-7, IC50 = 4.9 µM), human hepatic cells (HepG2, IC50 = 9.6 µM), a lung-derived fibroblast cell line (MRC-5, IC50 = 2.8 µM), and red blood cells (RBCs, IC50 = 14.9 µM). Appreciable to very high selectivity indexes (SIs) have been determined after 24 h treatments (SIs = 2.5-74.6), which provided evidence that both NB cell populations were already fully exterminated. These in vitro results pave the way for future investigations of BPPB on animal models and upon confirmation for the possible development of BPPB as a novel therapeutic to treat MDR HR-NB cells.

19.
Pharmaceutics ; 16(10)2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39458669

RESUMO

BACKGROUND/OBJECTIVES: Oral diseases causing mucosal lesions are normally treated with local or systemic anti-inflammatory, analgesic and antimicrobial agents. The development of topical formulations, including wound-healing promoters, might speed up the recovery process, improving patients' quality of life, and reduce the risk of deterioration in health conditions. In this study, a mucoadhesive multilayer film, including a novel biocompatible substance (solubilized eggshell membrane, SESM), was rationally designed. METHODS: The SESM preparation procedure was optimized and its biological effects on cell proliferation and inflammation marker gene expression were evaluated in vitro; preformulation studies were conducted to identify the most promising polymers with film-forming properties; then, trilayer films, consisting of an outer layer including chlorhexidine digluconate as a model drug, a supporting layer and a mucoadhesive layer, incorporating SESM, were prepared using the casting method and their mechanical, adhesion and drug release control properties were evaluated. RESULTS: SESM proved to possess a notable wound-healing capacity, inducing a wound closure of 84% in 24 h without inhibiting blood clotting. The films revealed a maximum detachment force from porcine mucosa of approx. 1.7 kPa and maximum in vivo residence time of approx. 200-240 min; finally, they released up to 98% of the loaded drug within 4 h. CONCLUSIONS: The formulated trilayer films were found to possess adequate properties, making them potentially suitable for protecting oral lesions and favoring their rapid healing, while releasing antimicrobial substances that might be beneficial in reducing the risk of bacterial infections.

20.
Pharmaceutics ; 16(10)2024 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-39458670

RESUMO

BACKGROUND/OBJECTIVES: Three-dimensional (3D) cell culture technologies allow us to overcome the constraints of two-dimensional methods in different fields like biochemistry and cell biology and in pharmaceutical in vitro tests. In this study, a novel 3D hydrogel sponge scaffold, composed of a crosslinked polyacrylic acid forming a porous matrix, has been developed and characterized. METHODS: The scaffold was obtained via an innovative procedure involving thermal treatment followed by a salt-leaching step on a matrix-containing polymer along with a gas-forming agent. Based on experimental design for mixtures, a series of formulations were prepared to study the effect of the three components (polyacrylic acid, NaHCO3 and NaCl) on the scaffold mechanical properties, density, swelling behavior and morphological changes. Physical appearance, surface morphology, porosity, molecular diffusion, transparency, biocompatibility and cytocompatibility were also evaluated. RESULTS: The hydrogel scaffolds obtained show high porosity and good optical transparency and mechanical resistance. The scaffolds were successfully employed to culture several cell lines for more than 20 days. CONCLUSIONS: The developed scaffolds could be an important tool, as such or with a specific coating, to obtain a more predictive cellular response to evaluate drugs in preclinical studies or for testing chemical compounds, biocides and cosmetics, thus reducing animal testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA