Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 57(2): 63-81, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36945889

RESUMO

BACKGROUND/AIMS: Titanium dioxide nanoparticles (TiO2 NPs) are extensively applied in the industry due to their photocatalytic potential, low cost, and considerably low toxicity. However, new unrelated physicochemical properties and the wide use of nanoparticles brought concern about their toxic effects. Thereby, we evaluated the cytotoxicity of a TiO2 NP composed of anatase and functionalized with sodium carboxylate ligands in a murine fibroblast cell line (LA-9). METHODS: Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and ATR-FTIR spectroscopy were applied to determine nanoparticle physicochemical properties. The cell viability (MTT assay) and clonogenic survival were analyzed in fibroblasts exposed to TiO2 NP (50, 150, and 250 µg/mL) after 24h. Moreover, oxidative stress, proinflammatory state, and apoptosis were evaluated after 24h. RESULTS: TiO2 NP characterization showed an increased hydrodynamic size (3.57 to 7.62 nm) due to solvent composition and a heterogeneity dispersion in water and cell culture media. Also, we observed a zeta potential increased from -20 to -11 mV in function of protein adsorption. TiO2 NP reduced fibroblast cell viability and induced ROS production at the highest concentrations (150 and 250 µg/mL). Moreover, TiO2 NP reduced the fibroblasts clonogenic survival at the highest concentration (250 µg/mL) on the 7th day after the 24h exposure. Nevertheless, TiO2 NP did not affect the fibroblast proinflammatory cytokines (IL-6 and TNF) secretion at any condition. Early and late apoptotic fibroblast cells were detected only at 150 µg/mL TiO2 NP after 24h. CONCLUSION: Probably, TiO2 NP photocatalytic activity unbalanced ROS production which induced apoptosis and consequently reduced cell viability and metabolic activity at higher concentrations.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Camundongos , Animais , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Nanopartículas/toxicidade , Nanopartículas/química , Titânio/química , Linhagem Celular , Fibroblastos/metabolismo , Sobrevivência Celular
2.
Microelectron Eng ; 267: 111912, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36406866

RESUMO

COVID-19 has spread worldwide and early detection has been the key to controlling its propagation and preventing severe cases. However, diagnostic devices must be developed using different strategies to avoid a shortage of supplies needed for tests' fabrication caused by their large demand in pandemic situations. Furthermore, some tropical and subtropical countries are also facing epidemics of Dengue and Zika, viruses with similar symptoms in early stages and cross-reactivity in serological tests. Herein, we reported a qualitative immunosensor based on capacitive detection of spike proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. The sensor device exhibited a good signal-to-noise ratio (SNR) at 1 kHz frequency, with an absolute value of capacitance variation significantly smaller for Dengue and Zika NS1 proteins (|ΔC| = 1.5 ± 1.0 nF and 1.8 ± 1.0 nF, respectively) than for the spike protein (|ΔC| = 7.0 ± 1.8 nF). Under the optimized conditions, the established biosensor is able to indicate that the sample contains target proteins when |ΔC| > 3.8 nF, as determined by the cut-off value (CO). This immunosensor was developed using interdigitated electrodes which require a measurement system with a simple electrical circuit that can be miniaturized to enable point-of-care detection, offering an alternative for COVID-19 diagnosis, especially in areas where there is also a co-incidence of Zika and Dengue.

3.
Sensors (Basel) ; 21(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801798

RESUMO

Neuronal damage secondary to traumatic brain injury (TBI) is a rapidly evolving condition, which requires therapeutic decisions based on the timely identification of clinical deterioration. Changes in S100B biomarker levels are associated with TBI severity and patient outcome. The S100B quantification is often difficult since standard immunoassays are time-consuming, costly, and require extensive expertise. A zero-length cross-linking approach on a cysteamine self-assembled monolayer (SAM) was performed to immobilize anti-S100B monoclonal antibodies onto both planar (AuEs) and interdigitated (AuIDEs) gold electrodes via carbonyl-bond. Surface characterization was performed by atomic force microscopy (AFM) and specular-reflectance FTIR for each functionalization step. Biosensor response was studied using the change in charge-transfer resistance (Rct) from electrochemical impedance spectroscopy (EIS) in potassium ferrocyanide, with [S100B] ranging 10-1000 pg/mL. A single-frequency analysis for capacitances was also performed in AuIDEs. Full factorial designs were applied to assess biosensor sensitivity, specificity, and limit-of-detection (LOD). Higher Rct values were found with increased S100B concentration in both platforms. LODs were 18 pg/mL(AuES) and 6 pg/mL(AuIDEs). AuIDEs provide a simpler manufacturing protocol, with reduced fabrication time and possibly costs, simpler electrochemical response analysis, and could be used for single-frequency analysis for monitoring capacitance changes related to S100B levels.

4.
Soft Matter ; 16(24): 5711-5717, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32525195

RESUMO

The understanding of the interactions between biomolecules and nanomaterials is of great importance in many areas of nanomedicine and bioapplications. Numerous studies in this area have been performed. However, toxicological aspects involving the interaction between phospholipids and carbon nanotubes (CNTs) remain undefined, especially for those cases in which a protein corona is not formed around the nanomaterial (corona-free nanomaterials). This study focuses on the interaction of Langmuir films of dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylcholine (DPPC) with corona-free, single-walled CNTs. Surface pressure-area isotherms and sum-frequency generation (SFG) vibrational spectroscopy, a non-linear optical technique used to study surfaces and interfaces, were used to investigate the lipid tail orientation and conformation, aiming to understand the interactions between phospholipids and single walled carbon nanotubes functionalized by carboxylic acid (SWCNTs-COOH) at the air-water interface under low ionic strength conditions. Data from isotherms and SFG spectra revealed that the SWCNT adsorption at the air-water interface is induced by the presence of both lipids, although at a lesser extent for DPPG due to its anionic head group, which could result in repulsion of SWCNTs-COOH that also bear a negative charge. Furthermore, lipid monolayers remained conformationally ordered, indicating insertion of SWCNTs into the lipid monolayer. Our results corroborate previous works and simulations in the literature, but made it possible to perform an in-depth investigation of the interaction of these nanomaterials with components of phospholipid membranes.


Assuntos
Membrana Celular/química , Modelos Biológicos , Nanotubos de Carbono/química , 1,2-Dipalmitoilfosfatidilcolina/química , Ácidos Carboxílicos/química , Fosfatidilgliceróis/química
5.
Environ Res ; 191: 110133, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32871150

RESUMO

Gold nanorods (AuNRs) are promising nanoscale materials for several technological and biomedical applications. The physicochemical properties of AuNRs, including size, shape and surface features, are crucial factors affecting their cytotoxicity. In this study, we investigated the effects of different aspect ratios of AuNRs (1.90, 2.35, 3.25 and 3.50) at concentrations of 2 and 10 µg mL-1 on their cytotoxicity and cellular uptake in green algae Raphidocelis subcaptata. The experiment was performed in oligotrophic freshwater medium in a growth chamber with constant agitation of 80 rpm under controlled conditions (120 µEm-2s-1 illumination; 12:12h light dark cycle and constant temperature of 22 ± 2 °C). The algal growth was monitored daily for 96 h via electronic absorbance scanning at 600-750 nm. Oxidative stress, cell viability and autofluorescence were evaluated using a flow cytometer. Oxidative stress quantified by loading cultures with the fluorescent dye 2', 7'-dichlorofluorescein diacetate. To assess algal cell viability, propidium iodide was selected as the fluorescent probe. Our results indicated that the aspect ratio of AuNRs mediates their biological effects in green algae R. subcaptata. A positive correlation between oxidative stress and increase of aspect ratio was found at concentration of 10 µg mL-1. Higher cytotoxicity and mortality were observed for algae incubated with higher aspect ratios AuNRs (3.50). These findings may be useful to understand the impact of the AuNRs in aquatic environments, contributing to ecosystem management and nanomaterials regulation.


Assuntos
Nanoestruturas , Nanotubos , Sobrevivência Celular , Ecossistema , Ouro/toxicidade , Nanotubos/toxicidade
6.
Proc Natl Acad Sci U S A ; 114(27): 6960-6965, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630340

RESUMO

Multifunctional nanoparticles for biomedical applications have shown extraordinary potential as contrast agents in various bioimaging modalities, near-IR photothermal therapy, and for light-triggered therapeutic release processes. Over the past several years, numerous studies have been performed to synthesize and enhance MRI contrast with nanoparticles. However, understanding the MRI enhancement mechanism in a multishell nanoparticle geometry, and controlling its properties, remains a challenge. To systematically examine MRI enhancement in a nanoparticle geometry, we have synthesized MRI-active Au nanomatryoshkas. These are Au core-silica layer-Au shell nanoparticles, where Gd(III) ions are encapsulated within the silica layer between the inner core and outer Au layer of the nanoparticle (Gd-NM). This multifunctional nanoparticle retains its strong near-IR Fano-resonant optical absorption properties essential for photothermal or other near-IR light-triggered therapy, while simultaneously providing increased T1 contrast in MR imaging by concentrating Gd(III) within the nanoparticle. Measurements of Gd-NM revealed a strongly enhanced T1 relaxivity (r1 ∼ 24 mM-1⋅s-1) even at 4.7 T, substantially surpassing conventional Gd(III) chelating agents (r1 ∼ 3 mM-1⋅s-1 at 4.7 T) currently in clinical use. By varying the thickness of the outer gold layer of the nanoparticle, we show that the observed relaxivities are consistent with Solomon-Bloembergen-Morgan (SBM) theory, which takes into account the longer-range interactions between the encapsulated Gd(III) and the protons of the H2O molecules outside the nanoparticle. This nanoparticle complex and its MRI T1-enhancing properties open the door for future studies on quantitative tracking of therapeutic nanoparticles in vivo, an essential step for optimizing light-induced, nanoparticle-based therapies.


Assuntos
Meios de Contraste/química , Gadolínio/química , Ouro/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Modelos Teóricos , Animais , Humanos
7.
Mikrochim Acta ; 187(8): 438, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651709

RESUMO

An electrochemical immunosensor was developed for the determination of apo-Tf (non-iron-bound) and holo-Tf (iron-bound) using polyclonal antibody transferrin (anti-Tf) immobilized at an electrode surface as a biorecognition platform. The monitoring was based on the anti-Tf binding with both Tf forms which allows the detection of cancer cells due to the constant iron cycle and the overexpression of anti-Tf on the cancer cell surface. The immunosensor characterization was performed using electrochemical impedance spectroscopy (EIS), which evaluated the impedimetric biorecognition of the antigens-antibody by the use of K4Fe(CN)6 redox group. The immunosensor was able to detect both forms of Tf in terms of charge transfer resistance (Rct). Analytical curves showed a limit of detection of 0.049 and 0.053 ng mL-1 for apo-Tf and holo-Tf, respectively. The immunosensor was applied to the detection of the two cancer cells A549 (lung carcinoma) and MCF-7 (breast carcinoma) and compared with BHK570, a healthy cell line. The impedimetric response of healthy cells differs significantly from that of the cancerous cells, as revealed by a Dunnett's test in 95% confidence level-ca. 102 cells mL-1-indicating the feasibility of the immunosensor to discriminate both types of cells. The indirect detection of anti-Tf based on apo-Tf and holo-Tf binding can be considered an advanced approach for cancer recognition. Graphical abstract.


Assuntos
Apoproteínas/análise , Neoplasias/diagnóstico , Transferrina/análise , Anticorpos Imobilizados/imunologia , Apoproteínas/imunologia , Linhagem Celular Tumoral , Espectroscopia Dielétrica/instrumentação , Espectroscopia Dielétrica/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Humanos , Imunoensaio/instrumentação , Imunoensaio/métodos , Limite de Detecção , Estudo de Prova de Conceito , Transferrina/imunologia
8.
Fish Physiol Biochem ; 45(4): 1289-1297, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31278452

RESUMO

Graphene oxide (GO) is a carbon nanomaterial with specific properties, which allow its use in several areas. Some studies have characterized the effects of GO on aquatic organisms, but the ability of recovery after exposure remains largely unknown. In this study, we evaluated the effects of GO on the antioxidant metabolism of zebrafish after 48 h of sub-lethal exposure, and the fish recovery after 168 h in nanoparticle-free water. After the sub-lethal exposure, superoxide dismutase (SOD) activity was significantly increased in 20 mg L-1, as well as catalase (CAT) activity in 2, 10, and 20 mg L-1, and the lipid peroxidation (LPO) had an increase in 2 mg L-1. On other hand, the glutathione peroxidase (GPx) activity was inhibited at 20 mg L-1. After 168 h of recovery in clean water, the SOD activity remained significantly increased in 20 mg L-1; the CAT activity was unchanged in all tested concentrations; the GPx activity was inhibited in 2, 10, and 20 mg L-1; and the LPO significantly decreased in 2 mg L-1. Our study suggests that GO exposure disrupts the antioxidant metabolism of adult zebrafish. Even after 168 h of recovery in clean water, homeostasis was not completely restored, although organisms developed mechanisms of recovery, and toxic effects were more subtle. Our results are pivotal to better understanding the physiological mechanisms involved in the detoxification process after GO exposure, and for strategies of protection on fish species.


Assuntos
Grafite/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Catalase/metabolismo , Feminino , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Superóxido Dismutase/metabolismo , Proteínas de Peixe-Zebra/metabolismo
9.
Langmuir ; 33(50): 14286-14294, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29166021

RESUMO

Understanding the interactions between biomolecules and nanomaterials is of great importance for many areas of nanomedicine and bioapplications. Although studies in this area have been performed, the interactions between cell membranes and nanoparticles are not fully understood. Here, we investigate the interactions that occur between the Langmuir monolayers of dipalmitoylphosphatidyl glycerol (DPPG) and dipalmitoylphosphatidyl choline (DPPC) with gold nanorods (NR)-with three aspect ratios-and gold nanoparticles. Our results showed that the aspect ratio of the NRs influenced the interactions with both monolayers, which suggest that the physical morphology and electrostatic forces govern the interactions in the DPPG-NR system, whereas the van der Waals interactions are predominant in the DPPC-NR systems. Size influences the expansion isotherms in both systems, but the lipid tails remain conformationally ordered upon expansion, which suggests phase separation between the lipids and nanomaterials at the interface. The coexistence of lipid and NP regions affects the elasticity of the monolayer. When there is coexistence between two phases, the elasticity does not reflect the lipid packaging state but depends on the elasticity of the NP islands. Therefore, the results corroborate that nanomaterials influence the packing and the phase behavior of the mimetic cell membranes. For this reason, developing a methodology to understand the membrane-nanomaterial interactions is of great importance.


Assuntos
Nanotubos , 1,2-Dipalmitoilfosfatidilcolina , Membrana Celular , Ouro , Nanopartículas Metálicas
10.
Biomed Microdevices ; 17(1): 3, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25653060

RESUMO

The rapid progress of nanomedicine, especially in areas related to medical imaging and diagnostics, has motivated the development of new nanomaterials that can be combined with biological materials for specific medical applications. One such area of research involves the detection of specific DNA sequences for the early diagnosis of genetic diseases, using nanoparticles-containing genosensors. Typical genosensors devices are based on the use of sensing electrodes - biorecognition platforms - containing immobilized capture DNA probes capable of hybridizing with specific target DNA sequences. In this paper we show that upon an appropriate design of the biorecognition platform, efficient sandwich-type genosensors based upon DNA-AuNPs nanocomplexes can be efficiently applied to the detection of a Systemic Arterial Hypertension (SAH) polymorphism located in intron 16 of the Angiotensin-converter enzyme (ACE) gene. Since SAH is intimately related to heart diseases, especially blood hypertension, its early detection is of great biomedical interest. The biorecognition platforms were assembled using mixed self-assembled monolayers (SAMmix), which provided the immobilization of organized architectures with molecular control. Detection of the DNA target sequence at concentrations down to 1 nM was carried out using electrochemical impedance spectroscopy (EIS). We show that the use of EIS combined with specific nanobiocomplexes represents an efficient method for the unambiguous detection of complementary DNA hybridization for preventative nanomedicine applications.


Assuntos
Sondas de DNA/química , Ouro/química , Hipertensão/diagnóstico , Hipertensão/genética , Nanomedicina , Peptidil Dipeptidase A/genética , Polimorfismo Genético , Animais , Humanos , Nanomedicina/instrumentação , Nanomedicina/métodos , Hibridização de Ácido Nucleico/métodos
11.
J Nanobiotechnology ; 13: 64, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26438142

RESUMO

BACKGROUND: Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. RESULTS: This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem- and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 µg mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag(+) ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. CONCLUSION: It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram-negative than Gram-positive, and similar against multidrug resistant and susceptible bacteria, with best result achieved using citrate and chitosan silver nanoparticles. The bactericidal effect of silver nanoparticle may, in the future, be translated into important therapeutic and clinical options, especially considering the shortage of new antimicrobials against the emerging antimicrobial resistant microorganisms, in particular against Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana/métodos , Prata/farmacologia , Antibacterianos/química , Bactérias/citologia , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana Múltipla , Humanos , Prata/química
12.
J Mol Recognit ; 27(2): 98-105, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24436127

RESUMO

Peptides from the COOH-terminal extension of cysteine proteinase B from Leishmania (Leishmania) amazonensis (cyspep) can modulate immune responses in vertebrate hosts. With this hypothesis as base, we used the online analysis tool SYFPEITHI to predict seven epitopes from this region with potential to bind H2 proteins. We performed proliferation tests and quantified reactive T lymphocytes applying a cytometry analysis, using samples from draining lymph node of lesions from L. (L.) amazonensis-infected mice. To define reactivity of T cells, we used complexes of DimerX (H2 D(b):Ig and H2 L(d):Ig) and the putative epitopes. Additionally, we applied surface plasmon resonance to verify real time interactions between the putative epitopes and DimerX proteins. Five peptides induced blastogenesis in BALB/c cells, while only two presented the same property in C57BL/6 mouse cells. In addition, our data indicate the existence of CD8+ T lymphocyte populations able to recognize each tested peptide in both murine strains. We observed an overlapping of results between the peptides that induced lymphocyte proliferation and those capable of binding to the DimerX in the surface plasmon resonance assays thus indicating that using these recombinant proteins in biosensing analyses is a promising tool to study real time molecular interactions in the context of major histocompatibility complex epitopes. The data gathered in this study reinforce the hypothesis that cyspep-derived peptides are important factors in the murine host infection by L. (L.) amazonensis.


Assuntos
Cisteína Proteases/imunologia , Epitopos/metabolismo , Imunidade Celular , Peptídeos/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Epitopos/imunologia , Antígenos H-2/imunologia , Humanos , Leishmania/imunologia , Leishmania/patogenicidade , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Camundongos
13.
Analyst ; 139(16): 3961-7, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24919542

RESUMO

Voltammetric studies have been carried out using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNTs) and the ionic liquid 1-butyl-3-methylimidazolium chloride (IL). Studies on the electrochemical properties of GCEs modified with MWCNTs and IL within different polymeric films (dihexadecylphosphate (DHP), Nafion, and chitosan (CTS)) were performed using a [Fe(CN)6](4-/3-) electrochemical probe. The modified GCE with different polymeric films was also tested for ciprofibrate (CPF) sensing in the presence and absence of IL in the film. The presence of IL and the MWCNTs improved the electrochemical response for CPF in all cases due to a synergic effect, and the IL-MWCNTs-DHP/GCE showed a great voltammetric profile for CPF detection. The IL-MWCNTs-DHP/GCE and differential pulse voltammetry (DPV) were used for the determination of CPF. An analytical curve was obtained for CPF in the concentration range of 2.50 × 10(-7) to 7.41 × 10(-6) mol L(-1) with a detection limit of 9.20 × 10(-8) mol L(-1). The proposed DPV method was successfully applied for CPF determination in pharmaceutical samples, and the results obtained agree with the results obtained using a spectrophotometric method at a confidence level of 95%.

14.
J Nanosci Nanotechnol ; 14(1): 378-89, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24730269

RESUMO

We present an overview on the use of disposable electrochemical biosensors for diagnostics, focusing on the applications of these devices as immunosensors and DNA sensors in the point-of-care diagnostics. Analytical biosensors have emerged as efficient alternatives for the detection of innumerous diseases, because of their high specificity and the convenience of detecting the electrochemical signals produced by the presence of an analyte using a portable equipment. This review highlights the recently developed strategies toward immobilization of different biological molecules on disposable electrodes such as carbon nanotubes and metal nanoparticles. In the course of the review, we first introduced the disposable biosensors, followed by an overview of the immunosensors, and discussed the applications of DNA sensors and disposable biosensors in point-of-care diagnostics. We also have evaluated the prospects and future applications of these devices in the field of biomedical research.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Equipamentos Descartáveis , Imunoensaio/instrumentação , Análise em Microsséries/instrumentação , Nanopartículas , Nanotecnologia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Nanopartículas/química , Nanopartículas/ultraestrutura
15.
J Mater Chem B ; 12(20): 4945-4961, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38685886

RESUMO

Self-activated luminescent calcium phosphate (CaP) nanoparticles, including hydroxyapatite (HA) and amorphous calcium phosphate (ACP), are promising for bioimaging and theragnostic applications in nanomedicine, eliminating the need for activator ions or fluorophores. In this study, we developed luminescent and stable citrate-functionalized carbonated ACP nanoparticles for bioimaging purposes. Our findings revealed that both the CO32- content and the posterior heating step at 400 °C significantly influenced the composition and the structural ordering of the chemically precipitated ACP nanoparticles, impacting the intensity, broadness, and position of the defect-related photoluminescence (PL) emission band. The heat-treated samples also exhibited excitation-dependent PL under excitation wavelengths typically used in bioimaging (λexc = 405, 488, 561, and 640 nm). Citrate functionalization improved the PL intensity of the nanoparticles by inhibiting non-radiative deactivation mechanisms in solution. Additionally, it resulted in an increased colloidal stability and reduced aggregation, high stability of the metastable amorphous phase and the PL emission for at least 96 h in water and supplemented culture medium. MTT assay of HepaRG cells, incubated for 24 and 48 h with the nanoparticles in concentrations ranging from 10 to 320 µg mL-1, evidenced their high biocompatibility. Internalization studies using the nanoparticles self-activated luminescence showed that cellular uptake of the nanoparticles is both time (4-24 h) and concentration (160-320 µg mL-1) dependent. Experiments using confocal laser scanning microscopy allowed the successful imaging of the nanoparticles inside cells via their intrinsic PL after 4 h of incubation. Our results highlight the potential use of citrate-functionalized carbonated ACP nanoparticles for use in internalization assays and bioimaging procedures.


Assuntos
Fosfatos de Cálcio , Nanopartículas , Fosfatos de Cálcio/química , Nanopartículas/química , Humanos , Tamanho da Partícula , Luminescência , Imagem Óptica , Sobrevivência Celular/efeitos dos fármacos , Carbonatos/química
16.
J Dent ; 146: 105073, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38782176

RESUMO

OBJECTIVES: Evaluate, in vitro, the effect of incorporating nano-sized sodium trimetaphosphate (TMPnano) and phosphorylated chitosan (Chi-Ph) into resin-modified glass ionomer cement (RMGIC) used for orthodontic bracket cementation, on mechanical, fluoride release, antimicrobial and cytotoxic properties. METHODS: RMGIC was combined with Chi-Ph (0.25%/0.5%) and/or TMPnano (14%). The diametral compressive/tensile strength (DCS/TS), surface hardness (SH) and degree of conversion (%DC) were determined. For fluoride (F) release, samples were immersed in des/remineralizing solutions. Antimicrobial/antibiofilm activity was evaluated by the agar diffusion test and biofilm metabolism (XTT). Cytotoxicity in fibroblasts was assessed with the resazurin method. RESULTS: After 24 h, the RMGIC-14%TMPnano group showed a lower TS value (p < 0.001); after 7 days the RMGIC-14%TMPnano-0.25%Chi-Ph group showed the highest value (p < 0.001). For DCS, the RMGIC group (24 h) showed the highest value (p < 0.001); after 7 days, the highest value was observed for the RMGIC-14%TMPnano-0.25%Chi-Ph (p < 0.001). RMGIC-14%TMPnano, RMGIC-14%TMPnano-0.25%Chi-Ph, RMGIC-14%TMPnano-0.5%Chi-Ph showed higher and similar release of F (p > 0.001). In the SH, the RMGIC-0.25%Chi-Ph; RMGIC-0.5%Chi-Ph; RMGIC-14%TMPnano-0.5%Chi-Ph groups showed similar results after 7 days (p > 0.001). The RMGIC-14%TMPnano-0.25%Chi-Ph group showed a better effect on microbial/antibiofilm growth, and the highest efficacy on cell viability (p < 0.001). After 72 h, only the RMGIC-14%TMPnano-0.25%Chi-Ph group showed cell viability (p < 0.001). CONCLUSION: The RMGIC-14%TMPnano-0.25%Chi-Ph did not alter the physical-mechanical properties, was not toxic to fibroblasts and reduced the viability and metabolism of S. mutans. CLINICAL RELEVANCE: The addition of phosphorylated chitosan and organic phosphate to RMGIC could provide an antibiofilm and remineralizing effect on the tooth enamel of orthodontic patients, who are prone to a high cariogenic challenge due to fluctuations in oral pH and progression of carious lesions.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Fibroblastos , Fluoretos , Cimentos de Ionômeros de Vidro , Teste de Materiais , Quitosana/farmacologia , Antibacterianos/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/química , Biofilmes/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fosforilação , Fluoretos/farmacologia , Dureza , Resistência à Tração , Propriedades de Superfície , Força Compressiva , Nanopartículas , Cimentos de Resina/química , Polifosfatos/farmacologia , Cimentos Dentários/farmacologia , Cimentos Dentários/química , Sobrevivência Celular/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Animais , Fosfatos/farmacologia , Humanos , Braquetes Ortodônticos
17.
J Nanosci Nanotechnol ; 13(3): 1946-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23755626

RESUMO

Silver nanoparticles have high temperature stability and low volatility, and at the nanoscale are known to be an effective antifungal and antimicrobial agent. The present investigation involves the synthesis of silver nanoparticle/carboxymethylcellulose nanocomposites. The nanoparticles synthesised in this study had sizes in the range of 100 and 40 nm. The nanocomposites formed by a combination of metallic nanoparticles and carboxymethylcellulose were characterised by contact angle measurements, solubility tests, thermal and mechanical analyses, and morphological images. Improvements in the hydrophobic properties were observed with inclusion of the nanoparticles in the nanocomposites, with the best results occurring after the addition of 40 nm nanoparticles in a carboxymethylcellulose matrix. The silver nanoparticles tend to occupy the empty spaces in the pores of the carboxymethylcellulose matrix, inducing the collapse of these pores and thereby improving the tensile and barrier properties of the film.

18.
Talanta ; 260: 124586, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37105083

RESUMO

Ochratoxin A (OTA) is a nephrotoxic and carcinogenic mycotoxin frequently found in coffee, which directly impacts human health and the economy of many countries. For this reason, there has been a growing need for simple and sensitive tools for the on-site detection of this mycotoxin. In this study, we developed a label-free impedimetric immunosensor to detect OTA. The biosensor was built on a thin-film gold electrode evaporated on glass substrtes, modified with a self-assembled cysteamine monolayer and anti-OTA antibodies. Atomic force microscopy and Microspectroscopy RAMAN confirmed the successful functionalization of the electrodes. The biosensor performance was evaluated by electrochemical impedance spectroscopy and the measurements indicated a linear relationship between the change in the impedance values and the OTA concentration in the range from 0.5 to 100 ng mL-1 with a limit of detection of 0.15 ng mL-1. The biosensor was highly selective and did not suffer matrix interference when analyzed in coffee samples. Furthermore, considering the small sample volumes, the short time required for analysis, and the possibility of miniaturization, the developed biosensor represents a promising analytical device for on-site coffee quality analyses.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Humanos , Café , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
19.
Carbohydr Polym ; 306: 120613, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746564

RESUMO

This study reports the fundamental understanding of mucus-modulatory strategies combining charged biopolymers with distinct molecular weights and surface charges. Here, key biophysical evidence supports that low-molecular-weight (Mw) polycation chitosan oligosaccharides (COSs) and high-Mw polyanion dextran sulfate (DS) exhibit distinct thermodynamic signatures upon interaction with mucin (MUC), the main protein of mucus. While the COS â†’ MUC microcalorimetric titrations released ~14 kcal/mol and ~60 kcal/mol, the DS â†’ MUC titrations released ~1200 and ~1450 kcal/mol at pH of 4.5 and 6.8, respectively. The MPT-2 titrations of COS â†’ MUC and DS â†’ MUC indicated a greater zeta potential variation at pH = 4.5 (relative variation = 815 % and 351 %, respectively) than at pH = 6.8 (relative variation = 282 % and 136 %, respectively). Further, the resultant binary (COS-MUC) and ternary (COS-DS-MUC) complexes showed opposite behavior (aggregation and charge inversion events) according to the pH environment. Most importantly, the results indicate that electrostatics could not be the driving force that governs COS-MUC interactions. To account for this finding, we proposed a two-level abstraction model. Macro features emerge collectively from individual interactions occurring at the molecular level. Therefore, to understand the outcomes of mucus modulatory strategy based on charged biopolymers it is necessary to integrate both visions into the same picture.


Assuntos
Quitosana , Quitosana/química , Sulfato de Dextrana/química , Biopolímeros/química , Muco/metabolismo , Mucinas/metabolismo
20.
Chemosphere ; 338: 139484, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37442389

RESUMO

The effects of PM10 on human health were investigated using samples collected in São Carlos city (São Paulo state), by the determination of the concentrations of PAHs and derivatives, together with evaluations of cytotoxicity and the formation of ROS in in vitro tests. In 2016, the mean concentrations of PM10, ΣPAHs, Σoxy-PAHs, Σnitro-PAHs, Σsaccharides, and Σions were 21.12 ± 9.90 µg m-3, 1.47 ± 1.70 ng m-3, 0.37 ± 0.31 ng m-3, 0.84 ng m-3, 119.91 ± 62.14 ng m-3, and 5.66 ± 4.52 µg m-3, respectively. The PM10 concentrations did not exceed the limit thresholds set by national legislation, however, the annual lung cancer risk calculated was 2.59 ± 1.22 cases per 100,000 people, in the dry season, which accounts for the annual risk (April to September). Moreover, the carcinogenic activities of the PAHs mixture were more than 1000-fold higher in the dry season (dry season: BaPeq = 0.30 ng m-3; wet season BaPeq = 0.02 ng m-3). The concentrations of most analytes were also higher during the dry season, as had already been demonstrated in the same city. This was due to reductions in precipitation, relative humidity and air temperature, and increased biomass burning, which was the main source of PM10 in the city in 2016 (contribution rate of more than 50%). Toxicological results also showed the negative impacts of PM10, exposure to PM10 extracts for 72 h reduced the viability of A549 and MRC5 cells, and the formation of ROS was observed. The cellular responses obtained using combined and individual extracts of PM10 differed and were sometimes associated with specific compounds. These demonstrate the importance of monitoring PM toxicity using different approaches and the main anthropogenic sources' contribution. Therefore, to improve air quality and human health, existing legislation needs to be modified to incorporate these tests.


Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Brasil/epidemiologia , Biomassa , Espécies Reativas de Oxigênio , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Estações do Ano , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA