Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 24(2): 1399-1412, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31809000

RESUMO

Liver plays an essential role in regulating lipid metabolism, and chronically disturbed hepatic metabolism may cause obesity and metabolic syndrome, which may lead to non-alcoholic fatty liver disease (NAFLD). Increasing evidence indicates long non-coding RNAs (lncRNAs) play an important role in energy metabolism. Here, we investigated the role of lncRNA H19 in hepatic lipid metabolism and its potential association with NAFLD. We found that H19 was up-regulated in oleic acid-induced steatosis and during the development of high-fat diet (HFD)-induced NAFLD. Exogenous overexpression of H19 in hepatocytes induced lipid accumulation and up-regulated the expression of numerous genes involved in lipid synthesis, storage and breakdown, while silencing endogenous H19 led to a decreased lipid accumulation in hepatocytes. Mechanistically, H19 was shown to promote hepatic steatosis by up-regulating lipogenic transcription factor MLXIPL. Silencing Mlxipl diminished H19-induced lipid accumulation in hepatocytes. Furthermore, H19-induced lipid accumulation was effectively inhibited by PI3K/mTOR inhibitor PF-04691502. Accordingly, H19 overexpression in hepatocytes up-regulated most components of the mTORC1 signalling axis, which were inhibited by silencing endogenous H19. In vivo hepatocyte implantation studies further confirm that H19 promoted hepatic steatosis by up-regulating both mTORC1 signalling axis and MLXIPL transcriptional network. Collectively, these findings strongly suggest that H19 may play an important role in regulating hepatic lipid metabolism and may serve as a potential therapeutic target for NAFLD.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Modelos Animais de Doenças , Inativação Gênica , Células HEK293 , Humanos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Ácido Oleico , RNA Longo não Codificante/genética , Triglicerídeos/metabolismo , Regulação para Cima/genética
2.
Biochem Biophys Res Commun ; 484(2): 336-341, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-28131831

RESUMO

There has been much concern regarding the dietary fructose contributes to the development of metabolic syndrome. High-fructose diet changes the expression of genes involved in lipid metabolism. Levels of a number of hepatic lipogenic enzymes are increased by a high-carbohydrate diet in fasted-refed model rats/mice. Both the white adipose tissue (WAT) and the liver play a key role in the maintenance of nutrient homeostasis. Here, the aim of this study was to analyze the expression of key genes related to lipid metabolism in epididymal WAT (eWAT) in response to different fasting condition after long-term chronic fructose consumption. Rats were fed standard chow supplemented with 10% w/v fructose solution for 5 weeks, and killed after chow-fasting and fructose withdrawal (fasting) or chow-fasting and continued fructose (fructose alone) for 14 h. Blood parameters and the expression of genes involved in fatty acid synthesis (ChREBP, SREBP-1c, FAS, SCD1), triglyceride biosynthesis (DGAT-1, DGAT-2) and lipid mobilization (ATGL, HSL) in eWAT were analyzed. In addition, mRNA levels of PPAR-γ, CD36 and LPL were also detected. As expected, fructose alone increased the mRNA expression of FAS, SCD1, and correspondingly decreased ATGL and HSL mRNA levels. However, ChREBP, DGAT-2, ATGL and HSL mRNA levels restored near to normal while FAS and SCD1 tend to basic level under fasting condition. The mRNA expression of SREBP-1c, PPAR-γ and LPL did not changed at any situations but CD36 mRNA decreased remarkably in fructose alone group. In conclusion, these findings demonstrate that genes involved in lipid metabolism in rat eWAT are varied in response to different fasting conditions after long-term fructose consumption.


Assuntos
Tecido Adiposo Branco/metabolismo , Epididimo/metabolismo , Jejum , Frutose/administração & dosagem , Metabolismo dos Lipídeos/genética , Animais , Peso Corporal , Expressão Gênica , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
3.
BMC Complement Altern Med ; 16: 209, 2016 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-27405506

RESUMO

BACKGROUND: Rhodiola species have been used for asthenia, depression, fatigue, poor work performance and cardiovascular diseases, all of which may be associated with insulin resistance. To disclose the underlying mechanisms of action, the effect of Rhodiola crenulata root (RCR) on insulin resistance was investigated. METHODS: Male Sprague-Dawley rats were treated with liquid fructose in their drinking water over 18 weeks. The extract of RCR was co-administered (once daily by oral gavage) during the last 5 weeks. The indexes of lipid and glucose homeostasis were determined enzymatically and/or by ELISA. Gene expression was analyzed by Real-time PCR, Western blot and/or confocal immunofluorescence. RESULTS: RCR extract (50 mg/kg) suppressed fructose-induced hyperinsulinemia and the increases in the homeostasis model assessment of insulin resistance index and the adipose tissue insulin resistance index in rats. Additionally, this treatment had a trend to restore the ratios of glucose to insulin and non-esterified fatty acids (NEFA) to insulin. Mechanistically, RCR suppressed fructose-induced acceleration of the clearance of plasma NEFA during oral glucose tolerance test (OGTT), and decreased triglyceride content and Oil Red O staining area in the gastrocnemius. Furthermore, RCR restored fructose-induced sarcolemmal overexpression and intracellular less distribution of fatty acid translocase/CD36 that contributes to etiology of insulin resistance by facilitating fatty acid uptake. CONCLUSION: These results suggest that RCR ameliorates insulin resistance in fructose-fed rats by modulating sarcolemmal and intracellular CD36 redistribution in the skeletal muscle. Our findings may provide a better understanding of the traditional use of Rhodila species.


Assuntos
Antígenos CD36/metabolismo , Resistência à Insulina , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Rhodiola/química , Animais , Frutose/administração & dosagem , Metabolismo dos Lipídeos , Masculino , Ratos , Ratos Sprague-Dawley , Sarcolema/enzimologia
4.
Mol Biol Rep ; 41(3): 1373-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24413988

RESUMO

Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor-ß superfamily, regulate a wide range of cellular responses including cell proliferation, differentiation, adhesion, migration, and apoptosis. BMP9, the latest BMP to be discovered, is reportedly expressed in a variety of human carcinoma cell lines, but the role of BMP9 in breast cancer has not been fully clarified. In a previous study, BMP9 was found to inhibit the growth, migration, and invasiveness of MDA-MB-231 breast cancer cells. In the current study, the effect of BMP9 on the bone metastasis of breast cancer cells was investigated. After absent or low expression of BMP9 was detected in the MDA-MB-231 breast cancer cells and breast non-tumor adjacent tissues using Western blot and immunohistochemistry, In our previous study, BMP9 could inhibit the proliferation and invasiveness of breast cancer cells MDA-MB-231 in vitro and in vivo. This paper shows that BMP9 inhibit the bone metastasis of breast cancer cells by activating the BMP/Smad signaling pathway and downregulating connective tissue growth factor (CTGF); however, when CTGF expression was maintained, the inhibitory effect of BMP9 on the MDA-MB-231 cells was abolished. Together, these observations indicate that BMP9 is an important mediator of breast cancer bone metastasis and a potential therapeutic target for treating this deadly disease.


Assuntos
Apoptose/genética , Neoplasias da Mama/genética , Fator de Crescimento do Tecido Conjuntivo/biossíntese , Fatores de Diferenciação de Crescimento/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/genética , Humanos
5.
BMC Complement Altern Med ; 14: 174, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24885946

RESUMO

BACKGROUND: The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. METHODS: The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. RESULTS: In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1. CONCLUSIONS: The present results suggest that ginger supplement diminishes fructose-induced kidney injury through suppression of renal overexpression of macrophage-associated proinflammatory cytokines in rats. Our findings provide evidence supporting the protective effect of ginger on the metabolic syndrome-associated kidney injury.


Assuntos
Rim/efeitos dos fármacos , Síndrome Metabólica/complicações , Extratos Vegetais/uso terapêutico , Insuficiência Renal Crônica/prevenção & controle , Zingiber officinale , Animais , Quimiocina CCL2/metabolismo , Colágeno/metabolismo , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Frutose , Perfilação da Expressão Gênica , Zingiber officinale/metabolismo , Interleucina-6/metabolismo , Rim/metabolismo , Masculino , Fitoterapia , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/etiologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Anal Methods ; 16(8): 1281-1287, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38327233

RESUMO

MiRNAs are critical regulators of target gene expression in many biological processes and are considered promising biomarkers for diseases. In this study, we developed a simple, specific, and sensitive miRNA detection method based on proximity ligation reaction, which is easy to operate. The method uses a pair of target-specific DNA probes immobilized on the same gold nanoparticles (AuNPs), which hybridize to the target miRNA. Hybridization brings the probes close together, allowing the formation of a continuous DNA sequence that can be amplified by Quantitative Real-time PCR (qPCR). This method eliminates the need for complex reverse transcription design and achieves high specificity for discriminating single base mismatches between miRNAs through a simple procedure. This method can sensitively measure three different miRNAs with a detection limit of 20 aM, providing high versatility and sensitivity, even distinguishing single-base variations among members of the miR-200 family with high selectivity. Due to its high selectivity and sensitivity, this method has important implications for the investigation of miRNA biological functions and related biomedical research.


Assuntos
Nanopartículas Metálicas , MicroRNAs , MicroRNAs/genética , MicroRNAs/análise , Ouro , Ácidos Nucleicos Imobilizados , Limite de Detecção
7.
Artigo em Inglês | MEDLINE | ID: mdl-23193424

RESUMO

Ginger has been demonstrated to improve lipid derangements. However, its underlying triglyceride-lowering mechanisms remain unclear. Fructose overconsumption is associated with increase in hepatic de novo lipogenesis, thereby resulting in lipid derangements. Here we found that coadministration of the alcoholic extract of ginger (50 mg/kg/day, oral gavage, once daily) over 5 weeks reversed liquid fructose-induced increase in plasma triglyceride and glucose concentrations and hepatic triglyceride content in rats. Plasma nonesterified fatty acid concentration was also decreased. Attenuation of the increased vacuolization and Oil Red O staining area was evident on histological examination of liver in ginger-treated rats. However, ginger treatment did not affect chow intake and body weight. Further, ginger treatment suppressed fructose-stimulated overexpression of carbohydrate response element-binding protein (ChREBP) at the mRNA and protein levels in the liver. Consequently, hepatic expression of the ChREBP-targeted lipogenic genes responsible for fatty acid biosynthesis was also downregulated. In contrast, expression of neither peroxisome proliferator-activated receptor- (PPAR-) alpha and its downstream genes, nor PPAR-gamma and sterol regulatory element-binding protein 1c was altered. Thus the present findings suggest that in rats, amelioration of fructose-induced fatty liver and hypertriglyceridemia by ginger treatment involves modulation of the hepatic ChREBP-mediated pathway.

8.
Foods ; 11(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36553847

RESUMO

Antibiotic residues in breast milk can have an impact on the intestinal flora and health of babies. Amoxicillin, as one of the most used antibiotics, affects the abundance of some intestinal bacteria. In this study, we developed a convenient and rapid process that used a combination of colorimetric methods and artificial intelligence image preprocessing, and back propagation-artificial neural network (BP-ANN) analysis to detect amoxicillin in breast milk. The colorimetric method derived from the reaction of gold nanoparticles (AuNPs) was coupled to aptamers (ssDNA) with different concentrations of amoxicillin to produce different color results. The color image was captured by a portable image acquisition device, and image preprocessing was implemented in three steps: segmentation, filtering, and cropping. We decided on a range of detection from 0 µM to 3.9 µM based on the physiological concentration of amoxicillin in breast milk and the detection effect. The segmentation and filtering steps were conducted by Hough circle detection and Gaussian filtering, respectively. The segmented results were analyzed by linear regression and BP-ANN, and good linear correlations between the colorimetric image value and concentration of target amoxicillin were obtained. The R2 and MSE of the training set were 0.9551 and 0.0696, respectively, and those of the test set were 0.9276 and 0.1142, respectively. In prepared breast milk sample detection, the recoveries were 111.00%, 98.00%, and 100.20%, and RSDs were 6.42%, 4.27%, and 1.11%. The result suggests that the colorimetric process combined with artificial intelligence image preprocessing and BP-ANN provides an accurate, rapid, and convenient way to achieve the detection of amoxicillin in breast milk.

9.
J Biol Chem ; 285(38): 29588-98, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20628059

RESUMO

Mesenchymal stem cells (MSCs) are bone marrow stromal cells that can differentiate into multiple lineages. We previously demonstrated that BMP9 is one of the most potent BMPs to induce osteogenic differentiation of MSCs. BMP9 is one of the least studied BMPs. Whereas ALK1, ALK5, and/or endoglin have recently been reported as potential BMP9 type I receptors in endothelial cells, little is known about type I receptor involvement in BMP9-induced osteogenic differentiation in MSCs. Here, we conduct a comprehensive analysis of the functional role of seven type I receptors in BMP9-induced osteogenic signaling in MSCs. We have found that most of the seven type I receptors are expressed in MSCs. However, using dominant-negative mutants for the seven type I receptors, we demonstrate that only ALK1 and ALK2 mutants effectively inhibit BMP9-induced osteogenic differentiation in vitro and ectopic ossification in MSC implantation assays. Protein fragment complementation assays demonstrate that ALK1 and ALK2 directly interact with BMP9. Likewise, RNAi silencing of ALK1 and ALK2 expression inhibits BMP9-induced BMPR-Smad activity and osteogenic differentiation in MSCs both in vitro and in vivo. Therefore, our results strongly suggest that ALK1 and ALK2 may play an important role in mediating BMP9-induced osteogenic differentiation. These findings should further aid us in understanding the molecular mechanism through which BMP9 regulates osteogenic differentiation of MSCs.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Fator 2 de Diferenciação de Crescimento/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II , Fosfatase Alcalina/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Ativação Enzimática/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/genética , Ligação Proteica , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microtomografia por Raio-X
10.
Sarcoma ; 2011: 325238, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21437219

RESUMO

Osteosarcoma (OS) is associated with poor prognosis due to its high incidence of metastasis and chemoresistance. It often arises in areas of rapid bone growth in long bones during the adolescent growth spurt. Although certain genetic conditions and alterations increase the risk of developing OS, the molecular pathogenesis is poorly understood. Recently, defects in differentiation have been linked to cancers, as they are associated with high cell proliferation. Treatments overcoming these defects enable terminal differentiation and subsequent tumor inhibition. OS development may be associated with defects in osteogenic differentiation. While early regulators of osteogenesis are unable to bypass these defects, late osteogenic regulators, including Runx2 and Osterix, are able to overcome some of the defects and inhibit tumor propagation through promoting osteogenic differentiation. Further understanding of the relationship between defects in osteogenic differentiation and tumor development holds tremendous potential in treating OS.

11.
Exp Ther Med ; 22(6): 1466, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34737806

RESUMO

Ageing often results in insulin resistance (IR) and chronic inflammation, and adipose is one of the tissues in which inflammation and IR occur earliest during this process. The present study investigated the effect and underlying mechanisms of ursolic acid (UA) on adipose IR and inflammation in ageing rats. Specific pathogen-free male Sprague-Dawley rats were randomly divided into 4 groups: i) Young normal (young); ii) untreated ageing (aged); and groups supplemented with UA either iii) low-UA 10 mg/kg (UA-L) or iv) high-50 mg/kg (UA-H). Animals in the UA-treated groups received 10 or 50 mg/kg UA (suspended in 5% Gum Arabic solution). The rats in the corresponding aged group and young groups received vehicle (5% Gum Arabic) alone. All rats were intragastrically treated once daily by oral gavage for 7 weeks. The day before the experiment terminated, overnight fasting blood (~700 µl) was collected and plasma was prepared to measure biochemical indicators; western blotting was performed to analyze the expression of insulin signaling proteins [(insulin receptor substrate 1 (IRS-1), phosphorylated (p)-IRS-1, PI3K, glucose transporter 4 (GLUT4), Akt and p-Akt)] and inflammatory factors (NF-κB, IL-6 and IL-1ß) in the epididymis white adipose tissue (eWAT). The results revealed that treatment with UA-H decreased eWAT weight, the ratio of eWAT weight/body weight, fasted insulin and triglyceride levels, the homeostasis model assessment of insulin resistance and adipose tissue insulin resistance index in ageing rats, indicating the amelioration of systemic and adipose tissue IR, compared with the aged group. Mechanistically, UA-H administration upregulated p-protein kinase B, the ratio of p-Akt to protein kinase B and total and cellular membrane GLUT4 protein levels in eWAT of ageing rats. Conversely, UA inhibited the increase in NF-κB expression and proinflammatory cytokines IL-6 and IL-1ß. However, these alterations were not observed in the rats of the aged group. Taken together, the findings of the present study indicated that UA may ameliorate adipose IR, which is associated with activation of the Akt-GLUT4 signaling pathway and inhibition of inflammation in ageing rats. These data provide a basis for the development of effective and safe drugs or functional substances, such as UA, for the prevention and treatment of metabolic diseases.

12.
J Pharm Biomed Anal ; 201: 114088, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33957363

RESUMO

This study aimed to compare the gene expression variation of clinical primary osteosarcoma (OS) and metastatic OS, identify expression profiles and signal pathways related to disease classification, and systematically evaluate the potential anticancer effect and molecular mechanism of ginsenoside Rh2 on OS. A raw dataset (GSE14359), which excluded GSM359137 and GSM359138, was downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) and principal component analysis (PCA) were obtained with limma. Pathways enrichment analysis was understood by GSEA app. Rh2-associated targets were harvested and mapped through PharmMapper and Cytoscape 3.4.0. The toxicity of Rh2 was determined using crystal staining and MTT assay on 143B and MG63 cell lines. The relative protein expression was confirmed through Western blot analysis. The mitochondrial membrane potential (△Ψm) was evaluated by JC-1 fluorescence staining. The cell mobility was measured via wound healing and transwell assays. A total of 752 genes were upregulated, while 161 genes were downregulated. GSEA and PCA displayed significant function enrichment and classification. Through PharmMapper and Cytoscape 3.4.0, Rh2 was found to target the mitogen activated protein kinase (MAPK) and PI3K signaling pathways, which are the key pathways in the metastasis of OS. Furthermore, Rh2 induced a concentration-dependent decrease in cell viability and early apoptosis associated with ΔΨm decline, while a non-lethal dose of Rh2 weakened the metastatic capability. Moreover, systematic evaluation showed that promoting the MAPK signaling pathway and inhibiting PI3K/Akt/mTOR were correlated with the anticancer effects of Rh2 on metastatic OS. In conclusion, transcriptome-derived approaches may be beneficial in diagnosing early metastases, and Rh2, a multi-targeting agent, shows promising application potential in suppressing metastatic OS in an MAPK- and PI3K/Akt/mTOR-dependent manner.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Ginsenosídeos , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Fosfatidilinositol 3-Quinases/genética
13.
Differentiation ; 78(4): 195-204, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19560855

RESUMO

Differentiation of embryonic and adult myogenic progenitors undergoes a complex series of cell rearrangements and specification events which are controlled by distinct gene regulatory networks. Delineation of the molecular mechanisms that regulate skeletal muscle specification and formation should be important for understanding congenital myopathies and muscular degenerative diseases. Retinoic acid (RA) signaling plays an important role in development. However, the role of RA signaling in adult myogenic progenitors is poorly understood. Here, we investigate the role of RA signaling in regulating myogenic differentiation of myoblastic progenitor cells. Using the mouse myoblast progenitor C2C12 line as a model, we have found that the endogenous expression of most RAR and RXR isotypes is readily detected. While the nuclear receptor co-repressors are highly expressed, two of the three nuclear receptor co-activators and the enzymes involved in RA synthesis are expressed at low level or undetectable, suggesting that the RA signaling pathway may be repressed in myogenic progenitors. Using the alpha-myosin heavy chain promoter-driven reporter (MyHC-GLuc), we have demonstrated that either ATRA or 9CRA is able to effectively induce myogenic differentiation, which can be synergistically enhanced when both ATRA and 9CRA are used. Upon ATRA and 9CRA treatment of C2C12 cells the expression of late myogenic markers significantly increases. We have further shown that adenovirus-mediated exogenous expression of RARalpha and/or RXRalpha is able to effectively induce myogenic differentiation in a ligand-independent fashion. Morphologically, ATRA- and 9CRA-treated C2C12 cells exhibit elongated cell body and become multi-nucleated myoblasts, and even form myoblast fusion. Ultrastructural analysis under transmission electron microscope reveals that RA-treated myogenic progenitor cells exhibit an abundant presence of muscle fibers. Therefore, our results strongly suggest that RA signaling may play an important role in regulating myogenic differentiation.


Assuntos
Mioblastos/metabolismo , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Transdução de Sinais/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Genes Reporter , Luciferases de Vaga-Lume/metabolismo , Camundongos , Mioblastos/ultraestrutura , Regiões Promotoras Genéticas , Fatores de Tempo , Tretinoína/farmacologia
14.
Oncol Rep ; 43(2): 491-502, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31894343

RESUMO

MicroRNA­708­5p (miR­708­5p) and epithelial­â€‹to­mesenchymal transition (EMT) have been widely identified to contribute to the pathogenesis and progression of multiple cancers. However, the connection between miR­708­5p and EMT has not been sufficiently clarified. Therefore, our research aimed to investigate the impact of miR­708­5p on EMT and the metastasis of osteosarcoma (OS). We first analyzed the differentially expressed microRNAs (DEmiRNAs) from the GSE70367 dataset. We found that the expression of miR­708­5p was lower in OS cells. Overexpression of miR­708­5p was able to impair the migration and invasion of OS cells. Moreover, miR­708­5p inhibited EMT of OS cells MG63 and SaOS­2, wherein E­cadherin was increased, and N­cadherin, vimentin, and Snail were decreased. Semaphorin 4C (SEMA4C), mitogen­activated protein kinase kinase kinase 3 (MAP3K3), and zinc finger E­box­binding homeobox 1 (ZEB1) were predicted as target genes of miR­708­5p by bioinformatics method. Only ZEB1, one of the EMT­inducing transcription factors, was validated as the direct target gene of miR­708­5p in OS cells through dual­luciferase reporter assay and Western blot analysis. Knockdown of ZEB1 was found to inhibit the metastasis of MG63 and SaOS­2 cells, whereas ZEB1 over-expression promoted their metastasis. In summary, miR­708­5p impaired the metastasis and EMT of OS, which was found to be mediated by inhibition of ZEB1.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , MicroRNAs/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Osteossarcoma/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
15.
Life Sci ; 253: 117722, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32348834

RESUMO

AIMS: It is well known that pyruvate dehydrogenase kinase 1 (PDK1) is highly expressed in breast cancer (BC) tissues and promotes tumor growth, but the underlying mechanisms of this process are unclear. Here, we investigated the effects of nuclear PDK1 on growth, migration and invasion in human BC cells. MAIN METHODS: The sub-cellular localization of PDK1 in BC cells was performed with subcellular fractionation followed by Western blot and immunofluorescence. The localization of PDK1 in breast normal tissue and breast duct carcinoma was detected by Immunohistochemistry. Then the protein-protein interaction between PDK1 and Importin ß was verified by co-immunoprecipitation assay. Finally, the effects of nuclear PDK1 on cell proliferation, apoptosis, migration and invasion of BC cells were assessed. KEY FINDINGS: In addition to its well-known sub-cellular localization, PDK1 was present in the nucleus of BC cells, and EGF treatment increased nucleus distribution of PDK1. Moreover, the level of nuclear PDK1 accumulation facilitated the growth of BC cells. We also found that the entry of PDK1 into nucleus mainly relied on the nuclear localization signal (NLS), and NLS mutation inhibited the entry of PDK1 into nucleus; as a result, the migration and invasion abilities of BC cells were impaired, and the number of apoptotic cells was significantly increased. SIGNIFICANCE: Our findings provided a new supplement to the sub-cellular localization of PDK1 in BC cells and uncovered the function of nuclear PDK1 in facilitating BC cells growth, migration and invasion.


Assuntos
Apoptose/fisiologia , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Núcleo Celular/metabolismo , Proliferação de Células/fisiologia , Feminino , Humanos , Invasividade Neoplásica
16.
Artigo em Inglês | MEDLINE | ID: mdl-32733585

RESUMO

Osteosarcoma (OS) is the most common primary malignant bone cancer. An increasing number of studies have demonstrated that ginsenoside Rg3 (Rg3), which is extracted from the roots of the traditional Chinese herb Panax ginseng, plays a tumor suppression role in various malignant tumors. In the present study, we aimed at investigating the role of Rg3 in the proliferation, migration, and invasion of OS and at exploring the underlying mechanisms. Cell viability and proliferation were observed by MTT assay and crystal violet staining. The migration and invasion of cells were measured by wound-healing assay and Transwell method. Signaling pathway screening was investigated using luciferase reporter gene assay. qRT-PCR and western blot were performed to measure the expression of molecules involved in cell epithelial-mesenchymal transition (EMT), and Wnt/ß-catenin pathway. Results suggested that Rg3 could not only inhibit proliferation but also hamper the migration and invasion of OS. qRT-PCR and western blot demonstrated that a reduced level of MMP2/MMP7/MMP9 was induced after Rg3 treatment. In addition, the expression levels of proteins related to EMT and the Wnt/ß-catenin pathway were downregulated. In summary, our data revealed that Rg3 could inhibit the proliferation, migration, and invasion of OS cells. This effect of Rg3 might be mediated by downregulating MMP2, MMP7, and MMP9 expression and suppressing EMT as well as the Wnt/ß-catenin pathway. Thus, Rg3 might be a potential agent for the treatment of OS.

17.
J Cell Mol Med ; 13(8B): 2448-2464, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19175684

RESUMO

Bone morphogenetic protein 9 (BMP-9) is a member of the transforming growth factor (TGF)-beta/BMP superfamily, and we have demonstrated that it is one of the most potent BMPs to induce osteoblast differentiation of mesenchymal stem cells (MSCs). Here, we sought to investigate if canonical Wnt/beta-catenin signalling plays an important role in BMP-9-induced osteogenic differentiation of MSCs. Wnt3A and BMP-9 enhanced each other's ability to induce alkaline phosphatase (ALP) in MSCs and mouse embryonic fibroblasts (MEFs). Wnt antagonist FrzB was shown to inhibit BMP-9-induced ALP activity more effectively than Dkk1, whereas a secreted form of LPR-5 or low-density lipoprotein receptor-related protein (LRP)-6 exerted no inhibitory effect on BMP-9-induced ALP activity. beta-Catenin knockdown in MSCs and MEFs diminished BMP-9-induced ALP activity, and led to a decrease in BMP-9-induced osteocalcin reporter activity and BMP-9-induced expression of late osteogenic markers. Furthermore, beta-catenin knockdown or FrzB overexpression inhibited BMP-9-induced mineralization in vitro and ectopic bone formation in vivo, resulting in immature osteogenesis and the formation of chondrogenic matrix. Chromatin immunoprecipitation (ChIP) analysis indicated that BMP-9 induced recruitment of both Runx2 and beta-catenin to the osteocalcin promoter. Thus, we have demonstrated that canonical Wnt signalling, possibly through interactions between beta-catenin and Runx2, plays an important role in BMP-9-induced osteogenic differentiation of MSCs.


Assuntos
Osso e Ossos/citologia , Diferenciação Celular/fisiologia , Fator 2 de Diferenciação de Crescimento/fisiologia , Células-Tronco Mesenquimais/citologia , Transdução de Sinais , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Meios de Cultivo Condicionados , Humanos , Camundongos
18.
J Cell Biochem ; 108(1): 295-303, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19562671

RESUMO

Wnt/beta-catenin pathway plays an important role in regulating embryonic development. Hepatocytes differentiate from endoderm during development. Hepatic progenitor cells (HPCs) have been isolated from fetal liver and extrahepatic tissues. Most current studies in liver development and hepatic differentiation have been focused on Wnts, beta-catenin, and their receptors. Here, we sought to determine the role of Wnt antagonists in regulating hepatic differentiation of fetal liver-derived HPCs. Using mouse liver tissues derived from embryonic day E12.5 to postnatal day (PD) 28, we found that 13 of the 19 Wnt genes and almost all of Wnt receptors/co-receptors were expressed in most stages. However, Wnt antagonists SFRP2, SFRP3, and Dkk2 were only detected in the early stages. We established and characterized the reversible stable HPCs derived from E14.5 mouse fetal liver (HP14.5). HP14.5 cells were shown to express high levels of early liver progenitor cell markers, but low levels or none of late liver markers. HP14.5 cells were shown to differentiate into mature hepatocytes upon dexamethasone (Dex) stimulation. Dex-induced late marker expression and albumin promoter activity in HP14.5 cells were inhibited by exogenous expression of SFRP3. Furthermore, Dex-induced glycogen synthesis of PAS-positive HP14.5 cells was significantly inhibited by SFRP3. Therefore, our results have demonstrated that the expression of Wnt antagonists decreases as hepatic differentiation progresses, suggesting that a balanced Wnt signaling may be critical during mouse liver development and hepatic differentiation.


Assuntos
Diferenciação Celular , Glicoproteínas/metabolismo , Hepatócitos/citologia , Células-Tronco/citologia , Proteínas Wnt/antagonistas & inibidores , Animais , Proliferação de Células , Células Cultivadas , Embrião de Mamíferos/metabolismo , Feminino , Glicoproteínas/genética , Hepatócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/citologia , Fígado/metabolismo , Camundongos , Células-Tronco/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
19.
Liver Int ; 29(10): 1569-81, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19737349

RESUMO

BACKGROUND: Hepatic progenitor cells (HPCs) can be isolated from fetal liver and extrahepatic tissues. Retinoic acid (RA) signalling plays an important role in development, although the role of RA signalling in liver-specific progenitors is poorly understood. AIMS: We sought to determine the role of RA in regulating hepatic differentiation. METHODS: RNA was isolated from liver tissues of various developmental stages. Liver marker expression was assessed by reverse transcriptase-polymerase chain reaction and immunofluorescence staining. Reversibly immortalized HPCs derived from mouse embryonic day 14.5 (E14.5) liver (aka, HP14.5) were established. Albumin promoter-driven reporter (Alb-GLuc) was used to monitor hepatic differentiation. Glycogen synthesis was assayed as a marker for terminal hepatic differentiation. RESULTS: Retinoic acid receptor (RAR)-alpha, retinoid X receptor (RXR)-alpha and RXR-gamma expressed in E12.5 to postnatal day 28 liver samples. Expression of RAR-beta and RXR-beta was low perinatally, whereas RAR-gamma was undetectable in prenatal tissues and increased postnatally. Retinal dehydrogenase 1 and 2 (Raldh1 and Raldh2) were expressed in all tissues, while Raldh3 was weakly expressed in prenatal samples but was readily detected postnatally. Nuclear receptor corepressors were highly expressed in all tissues, while expression of nuclear co-activators decreased in perinatal tissues and increased after birth. HP14.5 cells expressed high levels of early liver stem cell markers. Expression of RA signalling components and coregulators was readily detected in HP14.5. RA was shown to induce Alb-GLuc activity and late hepatocyte markers. RA was further shown to induce glycogen synthesis in HP14.5 cells, an important function of mature hepatocytes. CONCLUSIONS: Our results strongly suggest that RA signalling may play an important role in regulating hepatic differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fígado/embriologia , Transdução de Sinais , Células-Tronco/citologia , Tretinoína/farmacologia , Animais , Linhagem Celular , Fígado/citologia , Camundongos , Correpressor 1 de Receptor Nuclear/análise , Coativador 1 de Receptor Nuclear/análise , Receptores do Ácido Retinoico/análise , Receptores do Ácido Retinoico/genética , Receptores X de Retinoides/análise , Receptores X de Retinoides/genética
20.
Am J Chin Med ; 37(4): 747-57, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19655412

RESUMO

Ginseng is a commonly used herbal medicine with a wide range of therapeutic benefits. Total saponins of Panax ginseng (TSPG) is one of the main effective components of ginseng. Our previous studies have shown that TSPG could promote the production of normal blood cells and inhibition of the leukemia cell proliferation. However, whether ginseng can induce the differentiation of leukemia cells is still unclear. This study was to examine the effect of TSPG or the combination of erythropoietin (EPO) and TSPG on the erythroid differentiation of K562 cells, and their corresponding mechanisms regarding erythropoietin receptor (EPOR) expression. Under light and electron microscopes, the TSPG- or TSPG + EPO-treated K562 cells showed a tendency to undergo erythroid differentiation; early and intermediate erythroblast-like cells were observed. Hemoglobin and HIR2 expressions were significantly increased. As determined by Western blotting analysis, the EPOR protein level in the K562 cytoplasmic membrane was significantly decreased after TSPG treatment, while its cytoplasm level increased in a dose-dependent manner. However, the total cellular EPOR level was unchanged. These results indicate that TSPG-induced erythroid differentiation of K562 cells may be accompanied by the internalization of EPOR. Thus, our study suggests that treatment with a combination of TSPG and EPO may induce erythroid differentiation of K562 cells at least in part through induction of EPOR internalization.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Panax/química , Receptores da Eritropoetina/metabolismo , Saponinas/farmacologia , Western Blotting , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Tamanho Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eritroblastos/efeitos dos fármacos , Eritroblastos/patologia , Eritroblastos/ultraestrutura , Eritropoetina/farmacologia , Citometria de Fluxo , Hemoglobinas/metabolismo , Humanos , Imuno-Histoquímica , Células K562 , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA